Wheel & Paint Iron Decon

Motor Active

Chemwatch: **5355-77** Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **07/06/2019** Print Date: **16/06/2019** L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Wheel & Paint Iron Decon
Synonyms	D180101 (USGal)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Automotive.

Details of the supplier of the safety data sheet

Registered company name	Motor Active
Address	35 Slough Business Park, Holker Street Silverwater NSW 2128 Australia
Telephone	+61 2 9737 9422 1800 350 622
Fax	+61 2 9737 9414
Website	www.motoractive.com.au
Email	andrew.spira@motoractive.com.au

Emergency telephone number

Association / Organisation	Motor Active	
Emergency telephone numbers	+61 2 9737 9422 (For General Information Monday to Friday 8:30am to 5:pm)	
Other emergency telephone numbers	13 11 26 (In Case of Emergency contact: Poison Information Hotline)	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max :	
Flammability	1		
Toxicity	2		0 = Minimum
Body Contact	2	i	1 = Low 2 = Moderate
Reactivity	0		3 = High
Chronic	2	i	4 = Extreme

Poisons Schedule	Not Applicable
Classification ^[1]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation)
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

SIGNAL WORD	WARNING

Hazard statement(s)

H302	Harmful if swallowed.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.
H335	May cause respiratory irritation.

Chemwatch: **5355-77**Version No: **2.1.1.1**

Page 2 of 15

Wheel & Paint Iron Decon

Issue Date: **07/06/2019**Print Date: **16/06/2019**

Supplementary statement(s)

Not Applicable

CLP classification (additional)

Not Applicable

Precautionary statement(s) Prevention

P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P261	Avoid breathing mist/vapours/spray.
P270	Do not eat, drink or smoke when using this product.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P362	Take off contaminated clothing and wash before reuse.
P302+P352	IF ON SKIN: Wash with plenty of soap and water.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P330	Rinse mouth.

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
5421-46-5	10-30	ammonium thioglycolate
111-90-0	1-5	diethylene glycol monoethyl ether
1300-72-7	1-5	sodium xylenesulfonate
Not Available	<3	fatty alcohol ether sulfate
111-76-2	0.5-1.5	ethylene glycol monobutyl ether
68585-47-7	0.5-1.5	sodium mono-C10-16-alkyl sulfate
7732-18-5	>60	water

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Description of first and measures		
Eye Contact	If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation.	
Inhalation	 If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. 	
Ingestion	 IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the 	

Chemwatch: 5355-77 Page 3 of 15 Issue Date: 07/06/2019 Version No: 2.1.1.1

Wheel & Paint Iron Decon

Print Date: 16/06/2019

- patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
- ▶ If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise

▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances. In such an event consider:

- Foam.
- · dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Special hazards arising from the substrate or mixture		
Fire Incompatibility	None known.	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 	
Fire/Explosion Hazard	 ▶ Combustible. ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic furnes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) nitrogen oxides (NOx) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. May emit poisonous furnes. May emit corrosive furnes. 	
HAZCHEM	Not Applicable	

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite.

Wheel & Paint Iron Decon

Issue Date: 07/06/2019 Print Date: 16/06/2019

- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite
- Collect solid residues and seal in labelled drums for disposal
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked
- DO NOT allow material to contact humans, exposed food or food utensils.

Safe handling

- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- Keep containers securely sealed. ▶ No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Metal can or drum
- ▶ Packaging as recommended by manufacturer.
- ▶ Check all containers are clearly labelled and free from leaks.
- Storage incompatibility
- ▶ Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- ▶ Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ethylene glycol monobutyl ether	2-Butoxyethanol	20 ppm / 96.9 mg/m3	242 mg/m3 / 50 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
diethylene glycol monoethyl ether	Ethoxyethoxy)ethanol, 2-(2-; (Carbitol cellosolve; Diethylene glycol monoethyl ether)	75 ppm	100 ppm	450 ppm
ethylene glycol monobutyl ether	Butoxyethanol, 2-; (Glycol ether EB)	60 ppm	120 ppm	700 ppm

Ingredient	Original IDLH	Revised IDLH
ammonium thioglycolate	Not Available	Not Available
diethylene glycol monoethyl ether	Not Available	Not Available
sodium xylenesulfonate	Not Available	Not Available
ethylene glycol monobutyl ether	700 ppm	Not Available
sodium mono-C10-16-alkyl sulfate	Not Available	Not Available
water	Not Available	Not Available

MATERIAL DATA

Exposure controls

Appropriate engineering

controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use

Employers may need to use multiple types of controls to prevent employee overexposure.

Chemwatch: 5355-77 Page 5 of 15 Issue Date: 07/06/2019 Version No: 2.1.1.1 Print Date: 16/06/2019

Wheel & Paint Iron Decon

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which. in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shields

Chemical goggles

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact.
- chemical resistance of glove material,
- glove thickness and
- dexterity

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

Chemwatch: 5355-77 Page 6 of 15 Issue Date: 07/06/2019 Version No: 2.1.1.1 Print Date: 16/06/2019

Wheel & Paint Iron Decon

	Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Wheel & Paint Iron Decon

Material	СРІ
BUTYL	A
NEOPRENE	В
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NITRILE	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С
VITON	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

 $A(All\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gasses,\ B2 = Acid\ gas\ or\ hydrogen$ $\mbox{cyanide(HCN)}, \mbox{ B3 = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = } \mbox{ Constant of the co$ Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered
- ► Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Orange/red liquid with sulfurous odour; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	1.05
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	6.3-7	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	19.04-76.19
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>93	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	77.5 (%wt)
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	196

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7

 $^{^{\}star}$ Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

See section 5

Page **7** of **15** Issue Date: 07/06/2019 Version No: 2.1.1.1 Print Date: 16/06/2019 Wheel & Paint Iron Decon

Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition	Con position F

SECTION 11 TOXICOLOGICAL INFORMATION

products

nformation on toxicological e	effects		
Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Thiols (particularly ethyl mercaptan) produce lethargy or sleepiness (deep sedation may be produced by maximal sublethal intraperitoneal doses). The mercaptans generally produce central nervous system depression (although C-8 and isomeric C-8 members possess analeptic and pyschomimetic action). Exposure to high levels may result in headache, dizziness, nausea, vomiting, restlessness, muscular incoordination, skeletal muscle paralysis, severe or mild cyanosis, respiratory depression, coma and death. Odour threshold should not be used as a warning threshold since some materials are detected way below the measurable concentration. Odour fatigue may occur. Prolonged exposure may cause headache, nausea and ultimately loss of consciousness. Not normally a hazard due to non-volatile nature of product		
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Thioglycolate salts and derivatives may produce hypoglycaemia, central nervous system depression, dyspnea, and convulsions in experimental animals. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.		
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Fatalities were produced by topical application of a 10% solution of thioglycolic acid to guinea pigs at less than 5 ml/kg. Signs of intoxication included weakness, gasping and convulsions. Professional hair-dressers exposed to thioglycolate products show skin irritation and skin sensitisation. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.		
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.		
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Chronic exposure to thioglycolate salts (in occupational settings) have produce dermatoses and allergic reactions characterised by oedema, burning of the skin, papular rash, eczematous dermatitis of the scalp or hands, erythema and subcutaneous haemorrhage. Experimental animals have exhibited thyroid hyperplasia. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.		
	TOXICITY	IRRITATION	
Wheel & Paint Iron Decon	Dermal (None) LD50: >5000 mg/kg* ^[2]	Not Available	

	TOXICITY	IRRITATION
	Dermal (None) LD50: >5000 mg/kg* ^[2]	Not Available
Wheel & Paint Iron Decon	Inhalation (None) LC50: >50 mg/l/4h(vapour)*[2]	1
	Oral (None) LD50: >300 mg/kg* ^[2]	
	TOXICITY	IRRITATION
ammonium thioglycolate	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available
	Oral (rat) LD50: 25-200 mg/kg ^[1]	
	TOXICITY	IRRITATION
diethylene glycol monoethyl ether	dermal (rat) LD50: 5940 mg/kg ^[2]	Eye (rabbit): 125 mg mild
etnei	Inhalation (rat) LC50: >5.24 mg/l/4H ^[2]	Eye (rabbit): 500 mg moderate

Chemwatch: 5355-77 Version No: 2.1.1.1

Page 8 of 15 Wheel & Paint Iron Decon

Issue Date: 07/06/2019 Print Date: 16/06/2019

	Oral (rat) LD50: ~1920 mg/kg ^[2]	Skin (rabbit): 500 mg/24h mild
	TOXICITY	IRRITATION
sodium xylenesulfonate	Dermal (rabbit) LD50: >=2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]
	Oral (rat) LD50: >10 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 100 mg SEVERE
	Inhalation (rat) LC50: 449.48655 mg/l/4H ^[2]	Eye (rabbit): 100 mg/24h-moderate
thylene glycol monobutyl ether	Oral (rat) LD50: 250 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit): 500 mg, open; mild
		Skin: adverse effect observed (irritating) ^[1]
		Skin: no adverse effect observed (not irritating) $^{[1]}$
	TOXICITY	IRRITATION
	Oral (rat) LD50: 1288 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate
		Eye (rabbit):100 mg/24h-moderate
sodium mono-C10-16-alkyl sulfate		Eye (rabbit):250 ug - mild
		Skin (human): 25 mg/24h - mild
		Skin (rabbit):25 mg/24h-moderate
		Skin (rabbit):50 mg/24h - SEVERE
	TOXICITY	IRRITATION
water	Oral (rat) LD50: >90000 mg/kg ^[2]	Not Available
Legend:	Value obtained from Europe ECHA Registered Substance	es - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Ammonium and glyceryl thioglycolate and thioglycolic acid are used predominantly in cosmetic permanent waving lotions at concentrations up to 15.4% (as thioglycolic ccid). At use concentrations, these cosmetic ingredients are only slightly toxic in acute single oral and dermal exposures. In repeated dermal tests for extended periods of exposure, these ingredients were toxic. Commercial permanent wave products produced transient conjunctival redness to both rinsed and unrinsed eves.

The results of skin testing for irritation and sensitisation of these thioglycolates depends on the type of test system used. Under occlusive patch testing, the data indicate that these ingredients are cumulative irritants and possibly weak sensitisers, but not under semi-occlusive test conditions. In clinical patients, mainly hairdressers, glyceryl thioglycolate elicited allergic reactions at concentrations down to 0.25%.

Administration of ammonium thioglycolate to animals has produced hypoglycaemia, and thyroid effects.

The acute inhalation toxicity of a liquid droplet aerosol containing aqueous ammonium thioglycolate (as 60% thioglycolic acid) was evaluated using rats (number and strain not stated). Animals were exposed to the aerosol for 1 hr and then observed for 14 days. None of the animals died. Few animals experienced respiratory distress, and signs were not observed beyond 24 hr post-exposure. At necropsy, minor pulmonary abnormalities were observed. Hair-waving solutions containing thioglycolates may produce keratitis; they may also produce irritation, burning sensations, conjunctival inflammation, comeal epithelial erosion, turbidity of the cornea, mydriasis, cycloplegia, loss of convergence and disturbances of vision. A mother and daughter developed bilateral optic neuritis after the use of a cold wave lotion containing ammonia thioglycolate. Oedema of the discs and retina and centrocecal scotomas horizontal oval defect in the field of vision) were seen. Oedema subsided in six months but the scotomas persisted.

Sodium thioglycolate, which has widespread occupational and consumer exposure to women from cosmetics and hair-care products, was evaluated for developmental toxicity by topical exposure during the embryonic and fetal periods of pregnancy. In rats, maternal topical exposure to sodium thioglycolate, at 200 mg/kg/day (the highest dose tested) on gestational days (GD) 6-19, resulted in maternal toxicity, including reduced body weights and weight gain, increased relative water consumption and one death. Treatment-related increases in feed consumption and changes at the application site occurred at all doses, in the absence of increased body weights or body weight change. Foetal body weights/litter were decreased at 200 mg/kg/day, with no other embryo/foetal toxicity and no treatment-related teratogenicity in any group. In rabbits, maternal topical exposure to sodium thioglycolate on GD 6-29 resulted in maternal dose-related toxicity at the dosing site in all groups; no maternal systemic toxicity, entryo/fetal toxicity, or treatment-related teratogenicity were observed in any group. A no observed adverse effect level (NOAEL) was not identified for maternal toxicity in either species with the dosages tested. The developmental toxicity NOAEL was 100 mg/kg/day (rats) and >65 mg/kg/day (rabbits; the highest dose tested). The clinical relevance of theses study results is uncertain because no data were available for levels, frequency, or duration of exposures in female workers or end users.

Somnolence recorded

For diethylene glycol monoalkyl ethers and their acetates:

This category includes diethylene glycol ethyl ether (DGEE), diethylene glycol propyl ether (DGPE) diethylene glycol butyl ether (DGBE) and diethylene glycol hexyl ether (DGHE) and their acetates.

DIETHYLENE GLYCOL MONOETHYL ETHER

AMMONIUM THIOGLYCOLATE

Acute toxicity: There are adequate oral, inhalation and/or dermal toxicity studies on the category members. Oral LD50 values in rats for all category members are all > 3000 mg/kg bw, with values generally decreasing with increasing molecular weight. Four to eight hour acute inhalation toxicity studies were conducted for all category members except DGPE in rats at the highest vapour concentrations achievable. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 2000 mg/kg bw (DGHE) to 15000 mg/kg bw (DGEEA). Signs of acute toxicity in rodents are consistent with non-specific CNS depression typical of organic solvents in general. All category members are slightly irritating to skin and slightly to moderately irritating to eyes (with the exception of DGHE, which is highly irritating to eyes). Sensitisation tests with DGEE, DGEEA, DGPE, DGBE and DGBEA in animals and/or humans were negative.

Repeat dose toxicity: Valid oral studies conducted using DGEE, DGPE, DGBEA, DGHE and the supporting chemical DGBE ranged in duration from 30 days to 2 years. Effects predominantly included kidney and liver toxicity, absolute and/or relative changes in organ weights, and some changes in

Chemwatch: 5355-77 Page 9 of 15 Issue Date: 07/06/2019
Version No: 2.1.1.1 Print Date: 16/06/2019

Wheel & Paint Iron Decon

observed in inhalation studies with less than continuous exposure regimens.

haematological parameters. All effects were seen at doses greater than 800-1000 mg/kg bw/day from oral or dermal studies; no systemic effects were

Mutagenicity: DGEE, DGEEA, DGBE, DGBEA and DGHE generally tested negative for mutagenicity in *S. typhimurium* strains TA98, TA100, TA1535, TA1537 and TA1538 and DGBEA tested negative in E. coli WP2uvrA, with and without metabolic activation. *In vitro* cytogenicity and sister chromatid exchange assays with DGBE and DGHE in Chinese Hamster Ovary Cells with and without metabolic activation and *in vivro* micronucleus or cytogenicity tests with DGBE, DGBE and DGHE in rats and mice were negative, indicating that these diethylene glycol ethers are not likely to be genotoxic. Reproductive and developmental toxicity: Reliable reproductive toxicity studies on DGEE, DGBE and DGHE show no effect on fertility at the highest oral doses tested (4,400 mg/kg/day for DGBE in the mouse and 1,000 mg/kg/day for DGBE and DGHE in the rat). The dermal NOAEL for reproductive toxicity in rats administered DGBE also was the highest dose tested (2,000 mg/kg/day). Although decreased sperm motility was noted in F1 mice treated with 4,400 mg/kg/day DGEE in drinking water for 14 weeks, sperm concentrations and morphology, histopathology of the testes and fertility were not affected. Results of the majority of adequate repeated dose toxicity studies in which reproductive organs were examined indicate that DGPE and DGBEA do not cause toxicity to reproductive organs (including the testes). Test material-related testicular toxicity was not noted in the majority of the studies with DGEE or DGEEA.

Results of the developmental toxicity studies conducted with DGEE, DGBE and DGHE are almost exclusively negative. In these studies, effects on the foetus are generally not observed (even at concentrations that produced maternal toxicity). Exposure to 102 ppm (560 mg/m3) DGEE by inhalation (maximal achievable vapour concentration) or 1385 mg/kg/day DGEE by the dermal route during gestation did not cause maternal or developmental toxicity in the rat. Maternal toxicity and teratogenesis were not observed in rabbits receiving up to 1000 mg/kg/day DGBE by the dermal route during gestation; however a transient decrease in body weight was observed, which reversed by Day 21 In the mouse, the only concentration of DGEE tested (3500 mg/kg/day by gavage) caused maternal, but no foetal toxicity. Also, whereas oral administration of 2050 mg/kg/day DGBE (gavage) to the mouse and 1000 mg/kg/day DGHE (dietary) caused maternal toxicity, these doses had no effect on the developing foetus

SODIUM XYLENESULFONATE

Toxicological data are available and well documented for representative toluenesulfonates, xylenesulfonates and cumenesulfonates (including sodium, potassium, ammonium and calcium salts). These data demonstrate that hydrotropes have a low order of acute toxicity by all relevant routes (LC50s range from 100s to 1000s mg/kg), are not genotoxic *in vitro* or *in vivo*, show no evidence of a carcinogenic response (or any other systemic toxicity) in 2-year dermal exposure studies, and failed to induce developmental, teratogenic or fertility (sex organ) effects.

Adverse effects after repeated long term dosing of hydrotropes to animals included epidermal hyperplasia at the site of application in dermal studies, and decreased relative spleen weight in females in oral studies. The critical adverse effect and corresponding systemic NOAEL is 763 mg a.i./kg bw based upon decreased relative spleen weight in female rats in a 90-day oral study. The NOAEL for local effects, based on epidermal hyperplasia at the site of application, was 440 mg a.i./kg bw for mice in 90-day dermal studies.

Hydrotropes can be classified as a negligible-to-slight irritant to skin and a slight-to-moderate irritant to eyes. The irritation potential of aqueous solutions of hydrotropes depends on concentration, and the irritation is lessened with rinsing. Hydrotropes are not considered to be skin sensitisers.

HERA Report (Hydrotropes) September 2005

Hydrotropes in this category were assessed for mutagen/genotoxic potential in a variety of assays including the mouse micronucleus, Ames, mouse lymphoma, sister chromatid exchange and chromosome aberration assays. No positive results were seen in vitro or in vivo in any of the studies. For both mice and rats exposed dermally for two years, there was no evidence of carcinogenic potential.

Examination of the sex organs (such as prostate, testes or ovaries) from animals in 90-day feeding studies and 90-day and two year dermal studies yielded no evidence to suggest that these chemicals have an adverse affect on the reproductive organs.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

For ethylene glycol monoalkyl ethers and their acetates (EGMAEs):

Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates.

EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers.

Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolysis or haemolysis or haemolybis or haemolybin and/or haemoglobin and/or haemoglobinuria were observed cells of humans are many-fold more resistant to toxicity from EGPE and EGBE in vitro than those of rats.

Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA *in vitro* and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pigs, dogs, cats, and guinea pigs was less sensitive to haemolysis by BAA *in vitro*.

Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in S. typhimurium strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. In vitro cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic.

Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode of action data available, there was no significant hazard for human carcinogenicity

Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes)

Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic. The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE).

Exposure of pregnant rats to ethylene glycol monobutyl ether (2-butoxyethanol) at 100 ppm or rabbits at 200 ppm during organogenesis resulted in maternal toxicity and embryotoxicity including a decreased number of viable implantations per litter. Slight foetoxicity in the form of poorly ossified or unossified skeletal elements was also apparent in rats. Teratogenic effects were not observed in other species.

At least one researcher has stated that the reproductive effects were less than that of other monoalkyl ethers of ethylene glycol.

 $Chronic\ exposure\ may\ cause\ anaemia,\ macrocytosis,\ abnormally\ large\ red\ cells\ and\ abnormal\ red\ cell\ fragility.$

Exposure of male and female rats and mice for 14 weeks to 2 years produced a regenerative haemolytic anaemia and subsequent effects on the haemopoietic system in rats and mice. In addition, 2-butoxyethanol exposures caused increases in the incidence of neoplasms and nonneoplastic lesions (1). The occurrence of the anaemia was concentration-dependent and more pronounced in rats and females. In this study it was proposed that

2-butoxyethanol at concentrations of 500 ppm and greater produced an acute disseminated thrombosis and bone infarction in male and female rats as a

ETHYLENE GLYCOL MONOBUTYL ETHER Chemwatch: 5355-77 Page 10 of 15 Issue Date: 07/06/2019
Version No: 2.1.1.1 Print Date: 16/06/2019

Wheel & Paint Iron Decon

result of severe acute haemolysis and reduced deformability of erythrocytes or through anoxic damage to endothelial cells that compromise blood flow. In two-year studies, 2-butoxyethanol continued to affect circulating erythroid mass, inducing a responsive anaemia. Rats showed a marginal increase in the incidence of benign or malignant pheochromocytomas (combined) of the adrenal gland. In mice, 2-butoxyethanol exposure resulted in a concentration dependent increase in the incidence of squamous cell papilloma or carcinoma of the forestomach. It was hypothesised that exposure-induced irritation produced inflammatory and hyperplastic effects in the forestomach and that the neoplasia were associated with a continuation of the injury/ degeneration process. Exposure also produced a concentration -dependent increase in the incidence of haemangiosarcoma of the liver of male mice and hepatocellular carcinoma.

1: NTP Toxicology Program Technical report Series 484, March 2000.

For ethylene alvcol:

Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol.

dehydrogenase to form glycolaldehyde, which is rapidly converted to glycolic acid and glyoxal by aldehyde oxidase and aldehyde dehydrogenase. These metabolites are oxidised to glyoxylate; glyoxylate may be further metabolised to formic acid, oxalic acid, and glycine. Breakdown of both glycine and formic acid can generate CO2, which is one of the major elimination products of ethylene glycol. In addition to exhaled CO2, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination of ethylene glycol from the plasma in both humans and laboratory animals is rapid after oral exposure; elimination half-lives are in the range of 1-4 hours in most species tested.

Respiratory Effects. Respiratory system involvement occurs 12-24 hours after ingestion of sufficient amounts of ethylene glycol and is considered to be part of a second stage in ethylene glycol poisoning The symptoms include hyperventilation, shallow rapid breathing, and generalized pulmonary edema with calcium oxalate crystals occasionally present in the lung parenchyma. Respiratory system involvement appears to be dose-dependent and occurs concomitantly with cardiovascular changes. Pulmonary infiltrates and other changes compatible with adult respiratory distress syndrome (ARDS) may characterise the second stage of ethylene glycol poisoning Pulmonary oedema can be secondary to cardiac failure, ARDS, or aspiration of gastric contents. Symptoms related to acidosis such as hyperpnea and tachypnea are frequently observed; however, major respiratory morbidities such as pulmonary edema and bronchopneumonia are relatively rare and usually only observed with extreme poisoning (e.g., in only 5 of 36 severely poisoned cases).

Cardiovascular Effects. Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of oral ethylene glycol poisoning, which is 12-24 hours after acute exposure. The symptoms of cardiac involvement include tachycardia, ventricular gallop and cardiac enlargement. Ingestion of ethylene glycol may also cause hypertension or hypotension, which may progress to cardiogenic shock. Myocarditis has been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. As in the case of respiratory effects, cardiovascular involvement occurs with ingestion of relatively high doses of ethylene glycol.

Nevertheless, circulatory disturbances are a rare occurrence, having been reported in only 8 of 36 severely poisoned cases. Therefore, it appears that acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown. **Gastrointestinal Effects.** Nausea, vomiting with or without blood, pyrosis, and abdominal cramping and pain are common early effects of acute ethylene glycol ingestion. Acute effects of ethylene glycol ingestion in one patient included intermittent diarrhea and abdominal pain, which were attributed to mild colonic ischaemia; severe abdominal pain secondary to colonic stricture and perforation developed 3 months after ingestion, and histology of the resected colon showed birefringent crystals highly suggestive of oxalate deposition.

Musculoskeletal Effects. Reported musculoskeletal effects in cases of acute ethylene glycol poisoning have included diffuse muscle tenderness and myalgias associated with elevated serum creatinine phosphokinase levels, and myoclonic jerks and tetanic contractions associated with hypocalcaemia. Hepatic Effects. Central hydropic or fatty degeneration, parenchymal necrosis, and calcium oxalate crystals in the liver have been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol.

Renal Effects. Adverse renal effects after ethylene glycol ingestion in humans can be observed during the third stage of ethylene glycol toxicity 24-72 hours after acute exposure. The hallmark of renal toxicity is the presence of birefringent calcium oxalate monohydrate crystals deposited in renal tubules and their presence in urine after ingestion of relatively high amounts of ethylene glycol. Other signs of nephrotoxicity can include tubular cell degeneration and necrosis and tubular interstitial inflammation. If untreated, the degree of renal damage caused by high doses of ethylene glycol progresses and leads to haematuria, proteinuria, decreased renal function, oliguria, anuria, and ultimately renal failure. These changes in the kidney are linked to acute tubular necrosis but normal or near normal renal function can return with adequate supportive therapy.

Metabolic Effects. One of the major adverse effects following acute oral exposure of humans to ethylene glycol involves metabolic changes. These changes occur as early as 12 hours after ethylene glycol exposure. Ethylene glycol intoxication is accompanied by metabolic acidosis which is manifested by decreased pH and bicarbonate content of serum and other bodily fluids caused by accumulation of excess glycolic acid. Other characteristic metabolic effects of ethylene glycol poisoning are increased serum anion gap, increased osmolal gap, and hypocalcaemia. Serum anion gap is calculated from concentrations of sodium, chloride, and bicarbonate, is normally 12-16 mM, and is typically elevated after ethylene glycol ingestion due to increases in unmeasured metabolite anions (mainly glycolate).

Neurological Effects: Adverse neurological reactions are among the first symptoms to appear in humans after ethylene glycol ingestion. These early neurotoxic effects are also the only symptoms attributed to unmetabolised ethylene glycol. Together with metabolic changes, they occur during the period of 30 minutes to 12 hours after exposure and are considered to be part of the first stage in ethylene glycol intoxication. In cases of acute intoxication, in which a large amount of ethylene glycol is ingested over a very short time period, there is a progression of neurological manifestations which, if not treated, may lead to generalized seizures and coma. Ataxia, slurred speech, confusion, and somnolence are common during the initial phase of ethylene glycol intoxication as are irritation, restlessness, and disorientation. Cerebral edema and crystalline deposits of calcium oxalate in the walls of small blood vessels in the brain were found at autopsy in people who died after acute ethylene glycol ingestion.

Effects on cranial nerves appear late (generally 5-20 days post-ingestion), are relatively rare, and according to some investigators constitute a fourth, late cerebral phase in ethylene glycol intoxication. Clinical manifestations of the cranial neuropathy commonly involve lower motor neurons of the facial and bulbar nerves and are reversible over many months.

Reproductive Effects: Reproductive function after intermediate-duration oral exposure to ethylene glycol has been tested in three multi-generation studies (one in rats and two in mice) and several shorter studies (15-20 days in rats and mice). In these studies, effects on fertility, foetal viability, and male reproductive organs were observed in mice, while the only effect in rats was an increase in gestational duration.

Developmental Effects: The developmental toxicity of ethylene glycol has been assessed in several acute-duration studies using mice, rats, and rabbits. Available studies indicate that malformations, especially skeletal malformations occur in both mice and rats exposed during gestation; mice are apparently more sensitive to the developmental effects of ethylene glycol. Other evidence of embyrotoxicity in laboratory animals exposed to ethylene glycol exposure includes reduction in foetal body weight.

Cancer: No studies were located regarding cancer effects in humans or animals after dermal exposure to ethylene glycol.

Genotoxic Effects: Studies in humans have not addressed the genotoxic effects of ethylene glycol. However, available in vivo and in vitro laboratory studies provide consistently negative genotoxicity results for ethylene glycol.

NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. ** ASCC (NZ) SDS

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

Alkyl sulfates (AS) anionic surfactants are generally classified according to Comité Européen des Agents de Surface et leurs Intermédiaires Organiques (CESIO) as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). An exception has been made for C12 AS which is classified as Harmful (Xn) with the risk phrases R22 (Harmful if swallowed) and R38 and R41 (CESIO 2000). AS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/EEC.

AS are readily absorbed from the gastrointestinal tract after oral administration. Penetration of AS through intact skin appears to be minimal. AS are extensively metabolized in various species resulting in the formation of several metabolites. The primary metabolite is butyric acid-4-sulfate. The major site of metabolism is the liver. AS and their metabolites are primarily eliminated via the urine and only minor amounts are eliminated via the faeces. In rats about 70-90% of the dose was eliminated via the urine within 48 hours after oral, intravenous or intraperitoneal administration of 1 mg of AS per rat. The acute toxicity of AS in animals is considered to be low after skin contact or oral intake.

SODIUM MONO-C10-16-ALKYL SULFATE Chemwatch: 5355-77 Page 11 of 15 Issue Date: 07/06/2019
Version No: 2.1.1.1 Print Date: 16/06/2019

Wheel & Paint Iron Decon

For a homologous series of AS (C8 to C16), maximum swelling of stratum corneum (the outermost layer of epidermis) of the skin was produced by the C12 homologue. This is in accordance with the fact that the length of the hydrophobic alkyl chain influences the skin irritation potential. Other studies have shown that especially AS of chain lengths C11, C12 and C13 remove most amino acids and soluble proteins from the skin during washing. Concentrated samples of AS are skin irritants in rabbits and guinea pigs. AS are non-irritant to laboratory animals at a 0.1% concentration. C12 AS is used in research laboratories as a standard substance to irritate skin and has been shown to induce an irritant eczema. AS were found, by many authors, to be the most irritating of the anionic surfactants, although others have judged the alkyl sulfates only as irritant as laurate (fatty acid soap).

A structure/effect relationship with regard to the length of the alkyl chain can also be observed on mucous membranes. The maximum eye irritation occurs at chain lengths of C10 to C14. In acute ocular tests, 10% C12 AS caused comeal damage to the rabbit eyes if not irrigated. Another study showed that a 1.0% aqueous C12 AS solution only had a slight effect on rabbit eyes, whereas 5% C12 AS caused temporary conjunctivitis, and 25% C12 AS resulted in corneal damage.

In a 13-week feeding study, rats were fed dietary levels of 0, 40, 200, 1,000 or 5,000 ppm of C12 AS. The only test material related effect observed was an increase in absolute organ weights in the rats fed with the highest concentration which was 5,000 ppm. The organ weights were not further specified and no other abnormalities were found.

In a mutagenicity study, rats were fed 1.13 and 0.56% C12 AS in the diet for 90 days. This treatment did not cause chromosomal aberrations in the bone marrow cells.

Mutagenicity studies with Salmonella typhimurium strains (Ames test) indicate no mutagenic effects of C12 AS). The available long-term studies in experimental animals (rats and mice) are inadequate to evaluate the carcinogenic potential of AS. However, in studies in which animals were administered AS in the diet at levels of

up to 4% AS, there was no indication of increased risk of cancer after oral ingestion.

No specific teratogenic effects were observed in rabbits, rats or mice when pregnant animals were dosed with 0.2, 2.0, 300 and 600 mg C12 AS/kg body weight/day by gavage during the most important period of organogenesis (day 6 to 15 of pregnancy for mice and rats and day 6 to 18 of pregnancy for rabbits). Reduced litter size, high incidence of skeletal abnormalities and foetal loss were observed in mice at 600 mg C12 AS/kg/day, a dose level which also caused severe toxic effects in the parent animals in all three species . An aqueous solution of 2% AS was applied (0.1 ml) once daily to the dorsal skin (2 x 3 cm) of pregnant mice from day 1 to day 17 of gestation. A solution of 20% AS was tested likewise from day 1 to day 10 of gestation. The mice were killed on days 11 and 18, respectively. A significant decrease in the number of implantations was observed when mice were treated with 20% AS compared to a control group which was dosed with water. No evidence of teratogenic effects was noted.

When aqueous solutions of 2% and 20% AS (0.1 ml) were applied once per day to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice from day 12 to day 17 of gestation no effects on pregnancy outcome were detected. Treatment with 20% AS resulted in growth retardation of suckling mice, but this effect disappeared after weaning. A 10% AS solution (0.1 ml) was applied twice daily to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice during the preimplantation period (days 0-3 of gestation). A significant number of embryos collected on day 3 as severely deformed or remained at the morula stage. The number of embryos in the oviducts was significantly greater for the mice dosed with AS as compared to the control mice. No pathological changes were detected in the major organs of the dams

AMMONIUM THIOGLYCOLATE & SODIUM XYLENESULFONATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

DIETHYLENE GLYCOL MONOETHYL ETHER & SODIUM MONO-C10-16-ALKYL SUI FATE

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

DIETHYLENE GLYCOL MONOETHYL ETHER & ETHYLENE GLYCOL MONOBUTYL ETHER

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

SODIUM XYLENESULFONATE & WATER

SODIUM XYLENESULFONATE

MONO-C10-16-ALKYL

& SODIUM

SULFATE

No significant acute toxicological data identified in literature search.

for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates

Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths. Alpha-olefin sulfonates are mixtures of alkene sulfonate and hydroxyl alkane sulfonates with the sulfonate group in the terminal position and the double bond, or hydroxyl group, located at a position in the vicinity of the sulfonate group.

Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health.

Acute toxicity: These substances are well absorbed after ingestion; penetration through the skin is however poor. After absorption, these chemicals are distributed mainly to the liver.

Acute oral LD50 values of alkyl sulfates in rats and/or mice were (in mg/kg):

C10-; 290-580

C10-16-, and C12-; 1000-2000

C12-14, C12-15, C12-16, C12-18 and C16-18-; >2000

C14-18, C16-18-; >5000

The clinical signs observed were non-specific (piloerection, lethargy, decreased motor activity and respiratory rate, diarrhoea). At necropsy the major findings were irritation of the gastrointestinal tract and anemia of inner organs.

Based on limited data, the acute oral LD50 values of alkane sulfonates and alpha-olefin sulfonates of comparable chain lengths are assumed to be in the same range.

The counter ion does not appear to influence the toxicity in a substantial way.

Acute dermal LD50 values of alkyl sulfates in rabbits (mg/ kg):

C12-; 200

C12-13 and C10-16-;>500

Apart from moderate to severe skin irritation, clinical signs included tremor, tonic-clonic convulsions, respiratory failure, and body weight loss in the study with the C12- alkyl sulfate and decreased body weights after administration of the C10-16- alkyl sulfates. No data are available for alkane sulfonates but due to a comparable metabolism and effect concentrations in long-term studies effect concentrations are expected to be in the same range as found for alkyl

There are no data available for acute inhalation toxicity of alkyl sulfates, alkane sulfonates or alpha-olefin sulfonates.

In skin irritation tests using rabbits (aqueous solutions, OECD TG 404):

Chemwatch: 5355-77 Page 12 of 15 Issue Date: 07/06/2019
Version No: 2.1.1.1 Print Date: 16/06/2019

Wheel & Paint Iron Decon

C8-14 and C8-16 (30%), C12-14 (90%), C14-18 (60%)- corrosive Under occlusive conditions: C12. and C12-14 (25%). C12-15-, C13-15 and C15-16 (5-7%) - moderate to strong irritants

Comparative studies investigating skin effects like transepidermal water loss, epidermal electrical conductance, skin swelling, extraction of amino acids and proteins or development of erythema in human volunteers consistently showed a maximum of effects with C12-alkyl sulfate, sodium; this salt is routinely used as a positive internal control giving borderline irritant reactions in skin irritation studies performed on humans. As the most irritant alkyl sulfate it can be concluded that in humans 20% is the threshold concentration for irritative effects of alkyl sulfates in general. No data were available with regard to the skin irritation potential of alkane sulfonates. Based on the similar chemical structure they are assumed to exhibit similar skin irritation properties as alkyl sulfates or aloha-olefin sulfonates of comparable chain lenoths.

In eye irritation tests, using rabbits, C12-containing alkyl sulfates (>10% concentration) were severely irritating and produced irreversible corneal effects. With increasing alkyl chain length, the irritating potential decreases, and C16-18 alkyl sulfate sodium, at a concentration of 25%, was only a mild irritant. Concentrated C14-16- alpha-olefin sulfonates were severely irritating, but caused irreversible effects only if applied as undiluted powder. At concentrations below 10% mild to moderate, reversible effects, were found. No data were available for alkane sulfonates

Alkyl sulfates and C14-18 alpha-olefin sulfonates were not skin sensitisers in animal studies. No reliable data were available for alkane sulfonates. Based on the similar chemical structure, no sensitisation is expected.

However anecdotal evidence suggests that sodium lauryl sulfate causes pulmonary sensitisation resulting in hyperactive airway dysfunction and pulmonary allergy accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as a exhaust, perfumes and passive smoking.

Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. Repeated skin contact with some sulfonated surfactants has produced sensitisation dermatitis in predisposed individuals

Repeat dose toxicity: After repeated oral application of alkyl sulfates with chain lengths between C12 and C18, the liver was the only target organ for systemic toxicity. Adverse effects on this organ included an increase in liver weight, enlargement of liver cells, and elevated levels of liver enzymes. The LOAEL for liver toxicity (parenchymal hypertrophy and an increase in comparative liver weight) was 230 mg/kg/day (in a 13 week study with C16-18 alkyl sulfate, sodium). The lowest NOAEL in rats was 55 mg/kg/day (in a 13 week study with C12-alkyl sulfate, sodium).

C14- and C14-16-alpha-olefin sulfonates produced NOAELs of 100 mg/kg/day (in 6 month- and 2 year studies). A reduction in body weight gain was the only adverse effect identified in these studies.

No data were available with regard to the repeated dose toxicity of alkane sulfonates. Based on the similarity of metabolic pathways between alkane sulfonates, alkyl sulfates and alkyl-olefin sulfonates, the repeated dose toxicity of alkane sulfonates is expected to be similar with NOAEL and LOAEL values in the same range as for alkyl sulfates and alpha-olefin sulfonates, i.e. 100 and 200-250 mg/kg/day, respectively, with the liver as potential target organ.

Genotoxicity: Alkyl sulfates of different chain lengths and with different counter ions were not mutagenic in standard bacterial and mammalian cell systems both in the absence and in the presence of metabolic activation. There was also no indication for a genotoxic potential of alkyl sulfates in various in vivo studies on mice (micronucleus assay, chromosome aberration test, and dominant lethal assay).

alpha-Olefin sulfonates were not mutagenic in the Ames test, and did not induce chromosome aberrations in vitro. No genotoxicity data were available for alkane sulfonates. Based on the overall negative results in the genotoxicity assays with alkyl sulfates and alpha-olefin sulfonates, the absence of structural elements indicating mutagenicity, and the overall database on different types of sulfonates, which were all tested negative in mutagenicity assays, a genotoxic potential of alkane sulfonates is not expected.

Carcinogenicity: Alkyl sulfates were not carcinogenic in feeding studies with male and female Wistar rats fed diets with C12-15 alkyl sulfate sodium for two years (corresponding to doses of up to 1125 mg/kg/day).

alpha-Olefin sulfonates were not carcinogenic in mice and rats after dermal application, and in rats after oral exposure.

No carcinogenicity studies were available for the alkane sulfonates

Reproductive toxicity. No indication for adverse effects on reproductive organs was found in various oral studies with different alkyl sulfates. The NOAEL for male fertility was 1000 mg/kg/day for sodium dodecyl sulfate. In a study using alpha-olefin sulfonates in male and female rats, no adverse effects were identified up to 5000 ppm.

Developmental toxicity: In studies with various alkyl sulfates (C12 up to C16-18- alkyl) in rats, rabbits and mice, effects on litter parameters were restricted to doses that caused significant maternal toxicity (anorexia, weight loss, and death).

The principal effects were higher foetal loss and increased incidences of total litter losses. The incidences of malformations and visceral and skeletal anomalies were unaffected apart from a higher incidence of delayed ossification or skeletal variation in mice at > 500 mg/kg bw/day indicative of a delayed development. The lowest reliable NOAEL for maternal toxicity was about 200 mg/kg/day in rats, while the lowest NOAELs in offspring were 250 mg/kg/day in rats and 300 mg/kg/day for mice and rabbits.

For alpha-olefin sulfonates (C14-16-alpha-olefin sulfonate, sodium) the NOAEL was 600 mg/kg/day both for maternal and developmental toxicity. No data were available for the reproductive and developmental toxicity of alkane sulfonates. Based on the available data, the similar toxicokinetic properties and a comparable metabolism of the alkyl sulfates and alkane sulfonates, alkane sulfonates are not considered to be developmental toxicants. Although the database for category members with C<12 is limited, the available data are indicating no risk as the substances have comparable toxicokinetic properties and metabolic pathways. In addition, longer-term studies gave no indication for adverse effects on reproductive organs with different alkyl sulfates

Acute Toxicity	~	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	x
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
Wheel & Paint Iron Decon	Not Available	Not Available	Not Available	Not Available	Not Available

Chemwatch: **5355-77** Page **13** of **15**

Version No: 2.1.1.1 Wheel & Paint Iron Dec

 Page 13 of 15
 Issue Date: 07/06/2019

 Wheel & Paint Iron Decon
 Print Date: 16/06/2019

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	84.901mg/L	3
ammonium thioglycolate	EC50	48	Crustacea	38mg/L	2
	EC50	72	Algae or other aquatic plants	2.6mg/L	2
	NOEC	72	Algae or other aquatic plants	1.45mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	ca.6-10mg/L	2
diethylene glycol monoethyl	EC50	48	Crustacea	ca.7-611mg/L	2
ether	EC50	72	Algae or other aquatic plants	14-861mg/L	2
	EC10	168	Crustacea	7.38mg/L	2
	NOEC	96	Algae or other aquatic plants	>100mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURC
	LC50	96	Fish	>1-mg/L	2
sodium xylenesulfonate	EC50	48	Crustacea	>1-20mg/L	2
	EC50	96	Algae or other aquatic plants	>=230mg/L	2
	NOEC	504	Crustacea	<30mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-700mg/L	2
thylene glycol monobutyl ether	EC50	48	Crustacea	ca.1-800mg/L	2
	EC50	72	Algae or other aquatic plants	1-840mg/L	2
	NOEC	24	Crustacea	>1-mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
sodium mono-C10-16-alkyl sulfate	Not Available	Not Available	Not Available	Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
water	LC50	96	Fish	897.520mg/L	3
	EC50	96	Algae or other aquatic plants	8768.874mg/L	3

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
ammonium thioglycolate	LOW	LOW
diethylene glycol monoethyl ether	LOW (Half-life = 56 days)	LOW (Half-life = 0.93 days)
ethylene glycol monobutyl ether	LOW (Half-life = 56 days)	LOW (Half-life = 1.37 days)
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
ammonium thioglycolate	LOW (LogKOW = 0.0305)
diethylene glycol monoethyl ether	LOW (LogKOW = -0.54)
ethylene glycol monobutyl ether	LOW (BCF = 2.51)
water	LOW (LoaKOW = -1.38)

Mobility in soil

Ingredient	Mobility
ammonium thioglycolate	HIGH (KOC = 1.201)
diethylene glycol monoethyl ether	HIGH (KOC = 1)
ethylene glycol monobutyl ether	HIGH (KOC = 1)
water	LOW (KOC = 14.3)

SECTION 13 DISPOSAL CONSIDERATIONS

Chemwatch: **5355-77** Page **14** of **15**

Wheel & Paint Iron Decon

Issue Date: **07/06/2019**Print Date: **16/06/2019**

Waste treatment methods

Version No: 2.1.1.1

▶ DO NOT allow wash water from cleaning or process equipment to enter drains.

- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Product / Packaging disposal

 Where in doubt contact the responsible authority.

 Populate where your passible as appendit mapping to the contact the responsible authority.
 - ▶ Recycle wherever possible or consult manufacturer for recycling options.
 - ▶ Consult State Land Waste Authority for disposal.
 - Bury or incinerate residue at an approved site.
 - Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

AMMONIUM THIOGLYCOLATE(5421-46-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List	International Air Transport Association (IATA) Dangerous Goods Regulations
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes	International Maritime Dangerous Goods Requirements (IMDG Code)
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	United Nations Recommendations on the Transport of Dangerous Goods Model Regulations
Australia Inventory of Chemical Substances (AICS)	

DIETHYLENE GLYCOL MONOETHYL ETHER(111-90-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)	IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk
GESAMP/EHS Composite List - GESAMP Hazard Profiles	IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances
IMO IBC Code Chapter 17: Summary of minimum requirements	IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures
	containing at least 99% by weight of components already assessed by IMO

SODIUM XYLENESULFONATE(1300-72-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

ETHYLENE GLYCOL MONOBUTYL ETHER(111-76-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes	6
Australia Exposure Standards	GESAMP/EHS Composite List - GESAMP Hazard Profiles
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	IMO IBC Code Chapter 17: Summary of minimum requirements
Australia Inventory of Chemical Substances (AICS)	IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix	International Air Transport Association (IATA) Dangerous Goods Regulations
F (Part 3)	International Maritime Dangerous Goods Requirements (IMDG Code)
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index	United Nations Recommendations on the Transport of Dangerous Goods Model Regulations
Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2,	

SODIUM MONO-C10-16-ALKYL SULFATE(68585-47-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

IMO IBC Code Chapter 18: List of products to which the Code does not apply

National Inventory Status

Section Seven - Appendix I

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (sodium mono-C10-16-alkyl sulfate; water; sodium xylenesulfonate; ammonium thioglycolate; ethylene glycol monobutyl ether; diethylene glycol monoethyl ether)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (ammonium thioglycolate)
Korea - KECI	Yes

Chemwatch: 5355-77 Page 15 of 15 Issue Date: 07/06/2019 Version No: 2.1.1.1 Print Date: 16/06/2019

Wheel & Paint Iron Decon

New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (sodium mono-C10-16-alkyl sulfate; ammonium thioglycolate)
Vietnam - NCI	Yes
Russia - ARIPS	No (sodium mono-C10-16-alkyl sulfate)
Thailand - TECI	No (sodium mono-C10-16-alkyl sulfate)
Legend:	Yes = All declared ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	07/06/2019
Initial Date	07/06/2019

Other information

Ingredients with multiple cas numbers

Name	CAS No
sodium xylenesulfonate	1300-72-7, 30587-85-0

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA} : {\sf Permissible\ Concentration-Time\ Weighted\ Average}$

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.