Motor Active

Chemwatch: 4912-12 Version No: 7.1.1.1

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 1

Issue Date: 01/11/2019 Print Date: 26/11/2019 L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Meguiar's M54 Marine Boat Wash Gel
Synonyms	Product Code: M5401, M5416, 21-99A
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Boat and RV shampoo.
Relevant identified uses	Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	Motor Active
Address	35 Slough Business Park, Holker Street Silverwater NSW 2128 Australia
Telephone	+61 2 9737 9422 1800 350 622
Fax	+61 2 9737 9414
Website	www.motoractive.com.au
Email	andrew.spira@motoractive.com.au

Emergency telephone number

Association / Organisation	MotorActive
Emergency telephone numbers	+61 2 9737 9422 (For General Information Monday to Friday 8:30am to 5:pm)
Other emergency telephone numbers	13 11 26 (In Case of Emergency contact: Poison Information Hotline)

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	1
Flammability	0		I I
Toxicity	0		0 = Minimum
Body Contact	1		1 = Low 2 = Moderate
Reactivity	0		3 = High
Chronic	0		4 = Extreme

Poisons Schedule	Not Applicable
Classification ^[1]	Not Applicable

Label elements	
Hazard pictogram(s)	Not Applicable
SIGNAL WORD	NOT APPLICABLE

Hazard statement(s)

Not Applicable

Supplementary statement(s)

Not Applicable

CLP classification (additional)

Not Applicable

Precautionary statement(s) Prevention

Not Applicable

Issue Date: **01/11/2019**Print Date: **26/11/2019**

Precautionary statement(s) Response

Not Applicable

Version No: 7.1.1.1

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	10-30	anionic-ionic surfactant blend
Not Available	1-5	anionic surfactant
Not Available	1-5	alkanolamide
7732-18-5	70-90	water

SECTION 4 FIRST AID MEASURES

Description of first aid measures

•	
Eye Contact	If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.

In such an event consider:

- ► foam.
- dry chemical powder.
- ► carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.
Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Non combustible. Not considered to be a significant fire risk. Expansion or decomposition on heating may lead to violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit corrosive fumes.
HAZCHEM	Not Applicable

Issue Date: 01/11/2019 Print Date: 26/11/2019

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment as required. Prevent spillage from entering drains or water ways. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal. Wash area and prevent runoff into drains or waterways. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling	
Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	None known

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
Meguiar's M54 Marine Boat Wash Gel	Not Available	Not Available	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH	
water	Not Available		Not Available	

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even

Chemwatch: **4912-12**Version No: **7.1.1.1**

Page 4 of 10

Meguiar's M54 Marine Boat Wash Gel

Issue Date: **01/11/2019**Print Date: **26/11/2019**

minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- ▶ cause inflammation
- ▶ cause increased susceptibility to other irritants and infectious agents
- ▶ lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- ▶ acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood - local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 t/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

► Safety glasses with side shields

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

- ► Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

Body protection

See Other protection below

Other protection

- Overalls.
- ► P.V.C. apron.
- Barrier cream.Skin cleansing cream.
- Eye wash unit.

Recommended material(s) GLOVE SELECTION INDEX

Issue Date: 01/11/2019 Print Date: 26/11/2019

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Meguiar's M54 Marine Boat Wash Gel

Material	CPI
BUTYL	A
NEOPRENE	A
VITON	A
NATURAL RUBBER	С
PVA	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Bright pinkish red, pourable gel/liquid with pleasant sweet clean odour; miscible with water.			
Physical state	Gel	Relative density (Water = 1)	1.0	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable	
pH (as supplied)	8-9.5	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	3000-5000 cPs @20C	
Initial boiling point and boiling range (°C)	100	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	as water	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	VOC = 0	
Vapour pressure (kPa)	Not Available	Gas group	Not Available	
Solubility in water	Miscible	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available	

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7	
Chemical stability	roduct is considered stable and hazardous polymerisation will not occur.	
Possibility of hazardous reactions	See section 7	
Conditions to avoid	See section 7	
Incompatible materials	See section 7	
Hazardous decomposition products	See section 5	

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

information on toxicological choics				
Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation hazard is increased at higher temperatures.			
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.			
Skin Contact	Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after			

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Chemwatch: 4912-12 Page 6 of 10 Issue Date: 01/11/2019
Version No: 7.1.1.1 Print Date: 26/11/2019

Meguiar's M54 Marine Boat Wash Gel

	prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.		
Еуе	Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.		
Chronic	Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.		
Meguiar's M54 Marine Boat	TOXICITY	IRRITATION	
Wash Gel	Not Available	Not Available	
	TOXICITY	IRRITATION	
water	Oral (rat) LD50: >90000 mg/kg ^[2]	Not Available	
Legend:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates

Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths. Alpha-olefin sulfonates are mixtures of alkene sulfonate and hydroxyl alkane sulfonates with the sulfonate group in the terminal position and the double bond, or hydroxyl group, located at a position in the vicinity of the sulfonate group.

Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health.

Acute toxicity: These substances are well absorbed after ingestion; penetration through the skin is however poor. After absorption, these chemicals are distributed mainly to the liver.

Acute oral LD50 values of alkyl sulfates in rats and/or mice were (in mg/kg):

C10-; 290-580

C10-16-, and C12-; 1000-2000

C12-14, C12-15, C12-16, C12-18 and C16-18-; >2000

C14-18, C16-18-; >5000

The clinical signs observed were non-specific (piloerection, lethargy, decreased motor activity and respiratory rate, diarrhoea). At necropsy the major findings were irritation of the gastrointestinal tract and anemia of inner organs.

Based on limited data, the acute oral LD50 values of alkane sulfonates and alpha-olefin sulfonates of comparable chain lengths are assumed to be in the same range.

The counter ion does not appear to influence the toxicity in a substantial way.

Acute dermal LD50 values of alkyl sulfates in rabbits (mg/ kg):

C12-; 200

C12-13 and C10-16-;>500

Apart from moderate to severe skin irritation, clinical signs included tremor, tonic-clonic convulsions, respiratory failure, and body weight loss in the study with the C12- alkyl sulfate and decreased body weights after administration of the C10-16- alkyl sulfates. No data are available for alkane sulfonates but due to a comparable metabolism and effect concentrations in long-term studies effect concentrations are expected to be in the same range as found for alkyl sulfates.

There are no data available for acute inhalation toxicity of alkyl sulfates, alkane sulfonates or alpha-olefin sulfonates.

Meguiar's M54 Marine Boat Wash Gel

In skin irritation tests using rabbits (aqueous solutions, OECD TG 404):

C8-14 and C8-16 (30%), C12-14 (90%), C14-18 (60%)- corrosive

Under occlusive conditions

C12, and C12-14 (25%), C12-15-, C13-15 and C15-16 (5-7%) - moderate to strong irritants

Comparative studies investigating skin effects like transepidermal water loss, epidermal electrical conductance, skin swelling, extraction of amino acids and proteins or development of erythema in human volunteers consistently showed a maximum of effects with C12-alkyl sulfate, sodium; this salt is routinely used as a positive internal control giving borderline irritant reactions in skin irritation studies performed on humans. As the most irritant alkyl sulfate it can be concluded that in humans 20% is the threshold concentration for irritative effects of alkyl sulfates in general. No data were available with regard to the skin irritation potential of alkane sulfonates. Based on the similar chemical structure they are assumed to exhibit similar skin irritation properties as alkyl sulfates or alpha-olefin sulfonates of comparable chain lengths.

In eye irritation tests, using rabbits, C12-containing alkyl sulfates (>10% concentration) were severely irritating and produced irreversible corneal effects. With increasing alkyl chain length, the irritating potential decreases, and C16-18 alkyl sulfate sodium, at a concentration of 25%, was only a mild irritant.

Concentrated C14-16- alpha-olefin sulfonates were severely irritating, but caused irreversible effects only if applied as undiluted powder. At concentrations below 10% mild to moderate, reversible effects, were found. No data were available for alkane sulfonates

Alkyl sulfates and C14-18 alpha-olefin sulfonates were not skin sensitisers in animal studies. No reliable data were available for alkane sulfonates. Based on the similar chemical structure, no sensitisation is expected.

However anecdotal evidence suggests that sodium lauryl sulfate causes pulmonary sensitisation resulting in hyperactive airway dysfunction and pulmonary allergy accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as a exhaust, perfumes and passive smoking.

Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. Repeated skin contact with some sulfonated surfactants has produced sensitisation dermatitis in predisposed individuals

Repeat dose toxicity: After repeated oral application of alkyl sulfates with chain lengths between C12 and C18, the liver was the only target organ for systemic toxicity. Adverse effects on this organ included an increase in liver weight, enlargement of liver cells, and elevated levels of liver enzymes. The LOAEL for liver toxicity (parenchymal hypertrophy and an increase in comparative liver weight) was 230 mg/kg/day (in a 13 week study with C16-18 alkyl sulfate, sodium). The lowest NOAEL in rats was 55 mg/kg/day (in a 13 week study with C12-alkyl sulfate, sodium).

Chemwatch: 4912-12 Page 7 of 10

Version No: 7.1.1.1

Meguiar's M54 Marine Boat Wash Gel

Issue Date: **01/11/2019**Print Date: **26/11/2019**

C14- and C14-16-alpha-olefin sulfonates produced NOAELs of 100 mg/kg/day (in 6 month- and 2 year studies). A reduction in body weight gain was the only adverse effect identified in these studies.

No data were available with regard to the repeated dose toxicity of alkane sulfonates. Based on the similarity of metabolic pathways between alkane sulfonates, alkyl sulfates and alkyl-olefin sulfonates, the repeated dose toxicity of alkane sulfonates is expected to be similar with NOAEL and LOAEL values in the same range as for alkyl sulfates and alpha-olefin sulfonates, i.e. 100 and 200-250 mg/kg/day, respectively, with the liver as potential target organ.

Genotoxicity: Alkyl sulfates of different chain lengths and with different counter ions were not mutagenic in standard bacterial and mammalian cell systems both in the absence and in the presence of metabolic activation. There was also no indication for a genotoxic potential of alkyl sulfates in various in vivo studies on mice (micronucleus assay, chromosome aberration test, and dominant lethal assay). alpha-Olefin sulfonates were not mutagenic in the Ames test, and did not induce chromosome aberrations in vitro. No genotoxicity data were available for alkane sulfonates. Based on the overall negative results in the genotoxicity assays with alkyl sulfates and alpha-olefin sulfonates, the absence of structural elements indicating mutagenicity, and the overall database on different types of sulfonates, which were all tested negative in mutagenicity assays, a genotoxic potential of alkane sulfonates is not expected.

Carcinogenicity: Alkyl sulfates were not carcinogenic in feeding studies with male and female Wistar rats fed diets with C12-15 alkyl sulfate sodium for two years (corresponding to doses of up to 1125 mg/kg/day).

alpha-Olefin sulfonates were not carcinogenic in mice and rats after dermal application, and in rats after oral exposure. No carcinogenicity studies were available for the alkane sulfonates.

Reproductive toxicity: No indication for adverse effects on reproductive organs was found in various oral studies with different alkyl sulfates. The NOAEL for male fertility was 1000 mg/kg/day for sodium dodecyl sulfate. In a study using alpha-olefin sulfonates in male and female rats, no adverse effects were identified up to 5000 ppm.

Developmental toxicity: In studies with various alkyl sulfates (C12 up to C16-18- alkyl) in rats, rabbits and mice, effects on litter parameters were restricted to doses that caused significant maternal toxicity (anorexia, weight loss, and death).

The principal effects were higher foetal loss and increased incidences of total litter losses. The incidences of malformations and visceral and skeletal anomalies were unaffected apart from a higher incidence of delayed ossification or skeletal variation in mice at > 500 mg/kg bw/day indicative of a delayed development. The lowest reliable NOAEL for maternal toxicity was about 200 mg/kg/day in rats, while the lowest NOAELs in offspring were 250 mg/kg/day in rats and 300 mg/kg/day for mice and rabbits.

For alpha-olefin sulfonates (C14-16-alpha-olefin sulfonate, sodium) the NOAEL was 600 mg/kg/day both for maternal and developmental toxicity. No data were available for the reproductive and developmental toxicity of alkane sulfonates. Based on the available data, the similar toxicokinetic properties and a comparable metabolism of the alkyl sulfates and alkane sulfonates, alkane sulfonates are not considered to be developmental toxicates.

Although the database for category members with C<12 is limited, the available data are indicating no risk as the substances have comparable toxicokinetic properties and metabolic pathways. In addition, longer-term studies gave no indication for adverse effects on reproductive organs with different alkyl sulfates

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Meguiar's M54 Marine Boat Wash Gel & WATER

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

🗶 – Data either not available or does not fill the criteria for classification

– Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Meguiar's M54 Marine Boat	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
Wash Gel	Available	Not Available TEST DURATION (HR)	Not Available SPECIES	Available	Available
water	LC50 EC50	96 96	Fish Algae or other aquatic plants	897.520mg/L 8768.874mg/L	3
		1		1 1	

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates:

Environmental fate:

The close structural similarities result in physico-chemical properties and environmental fate characteristic which follow a regular pattern.

The most important common structural feature of the category members is the presence of a predominantly linear aliphatic hydrocarbon chain with a polar sulfate or sulfonate group, neutralised with a counter ion (i.e., Na+, K+, NH4+, or an alkanolamine cation).

The hydrophobic hydrocarbon chain (with a length typically between C8 and C18) and the polar sulfate or sulfonate groups confer surfactant properties and enable the commercial use of these substances as anionic surfactants

Version No: 7.1.1.1

Meguiar's M54 Marine Boat Wash Gel

Issue Date: **01/11/2019**Print Date: **26/11/2019**

The structural similarities result in the same mode of ecotoxic action. Within each subcategory the most important parameter influencing ecotoxicity is the varying length of the alkyl chain. Although the counter ion may also influence the physico-chemical behaviour of these chemicals, the chemical reactivity and classification for the purpose of this assessment is not expected to be affected by the difference in counter ion.

As ionic substances, all members of this category have extremely low vapor pressures. Calculated values are in the ranges 10-11 to 10-15 hPa (C8-18 alkyl sulfates), 4.3.10-11 to 9.10-15 hPa (C8-18 alkane sulfonates), 2.1.10-13 to 6.9.10-15 hPa (C14-18 alkene sulfonates) and 3.3.10-17 to 5.8.10-19 hPa (C14-18 hydroxy alkane sulfonates). Therefore, they decompose before reaching their theoretical boiling points.

Measured water solubilities are available only for alkyl sulfates; they are in the range 196 000 mg/l (C12) to 300 mg/l (C16) and by factors of 50 to 300 higher than calculated values (C12: 617 mg/l, C16: 5 mg/l).

As surfactants have a tendency to concentrate at hydrophilic/hydrophobic boundaries rather than to equilibrate between phases log Kow is not a good descriptor of surfactant hydrophobicity and only of limited predictive value for the partitioning of these compounds in the environment.

All calculated physico-chemical properties of surfactants should be treated with caution, because the estimation models do not take into account surfactant properties. In addition, the results are doubtful for ionic substances.

Deduced from physico-chemical and surfactancy properties the target compartment for the substances of this category is the hydrosphere. Based on the ionic structure partitioning into the atmosphere can be excluded. In water, the compounds are stable to hydrolysis under environmental conditions.

Taking into account the low BCF factors (<73) that were determined for (up to) C16-alkyl sulfates, any significant bioaccumulation is not expected.

Soil sorption increases with chain length. Strong sorption on soils would be expected for chain length C14 upwards. Sediment concentrations were between 0.0035 and 0.021 mg/kg dw indicating that accumulation in sediments is low. Under certain conditions of reduced moisture in soil, i.e. in arid or semi-arid regions, accumulation in soil cannot be excluded. The substances of this category are readily biodegradable. Significant biodegradation of alkyl sulfates in the raw sewage, i.e. in the sewer system before reaching the (waste-water treatment plant (WWTPs) is very likely. The substances of this category are quantitatively removed in WWTPs, mainly by biodegradation. Because of the anaerobic degradation of alkyl sulfates in sewage sludge, exposure of agricultural soils due to application of sludge as fertiliser is not expected. However, for alkane sulfonates and alpha-olefin sulfonates this exposure pathway cannot be excluded due to their recalcitrant or limited anaerobic degradability.

For alkyl sulfates: The biological degradation of AS is initiated by a hydrolytic cleavage of the sulfate ester bond catalysed by alkylsulfatases. The cleavage leaves inorganic sulfate and fatty alcohol which undergo oxidation by dehydrogenases to produce fatty acids via fatty aldehydes. The fatty acids are degraded by beta-oxidation and finally totally mineralised or incorporated into biomass. The biological degradation pathway for secondary AS differs from that of the primary AS by the formation of a ketone instead of an aldehyde. The biological degradation of AS is initiated by a hydrolytic cleavage of the sulfate ester bond catalysed by alkylsulfatases. The cleavage leaves inorganic sulfate and fatty alcohol which undergo oxidation by dehydrogenases to produce fatty acids via fatty aldehydes. The fatty acids are degraded by beta-oxidation and finally totally mineralised or incorporated into biomass. The biological degradation pathway for secondary AS differs from that of the primary AS by the formation of a ketone instead of an aldehyde. Biodegradation under anoxic conditions is anticipated to follow the same pathway as for the aerobic degradation.

Primary and secondary AS generally undergo complete primary biodegradation within a few days followed by a rapid ultimate biodegradation. Branched AS are also degraded quite rapidly, but multiple branchings of the alkyl chain considerably reduce the rate and extent of primary biodegradation. There are numerous studies confirming the aerobic biodegradability of AS, and linear primary AS exceeds all other anionic surfactants in the rate of primary and ultimate biodegradation. Also secondary AS are normally readily biodegradable as, e.g., the oxygen uptake from biodegradation of a linear secondary C10-13 AS corresponded to 77% ThOD in 22 days. Some highly branched AS being poorly primary biodegradable may also resist ultimate biodegradation.

Both linear and 2-alkyl-branched primary AS are degraded to a high extent under anaerobic conditions.

AS are generally considered to have a low potential for bioconcentration in aquatic organisms

For alkane sulfonates: Alkane sulfonate anionics (SAS) undergo rapid primary biodegradation with Methylene Blue Active Substance (MBAS) removal higher than 90% within a few days. Removal of 96% were seen in the OECD screening test for primary biodegradation. In activated sludge simulation tests, 96% of C10-18 SAS was removed, while the parent C13-18 SAS was removed by 83-96%.

Alkyl sulfonates are not degraded under anoxic conditions

For alpha-olefin sulfonates: alpha-Olefine sulfonates (AOS) AOS undergo rapid primary biodegradability with methylene blue active substances (MBAS) removal between 95 and 100% in 2 to 8 days in river water and inoculated media. The ultimate biodegradability of AOS exceeds the pass requirements in OECD 301 tests for ready biodegradability. report 85% DOC removal in the modified OECD screening test, 85% ThOD in the closed bottle test, and 65-80% ThCO2 in the Sturm test. In activated sludge simulation tests, AOS was removed by 100% MBAS and 88% DOC. The alkene sulfonates and hydroxyalkane sulfonates in commercial AOS are both ultimately biodegraded as approximately 84% ThCO2 was obtained during degradation of C14, C16, and C18 within 27 days, whereas the corresponding 3-hydroxyalkane sulfonates were degraded by approximately 86% under the same conditions.

AOS are not readily degradable under anaerobic conditions Reports indicate a range of 31% to 43% MBAS removal under anoxic conditions indicating primary biodegradation **Ecotoxicity:**

The aquatic toxicity is influenced by a number of parameters, the length of the alkyl chain being most important. The pH and temperature of water bodies can affect the EC/LC50 values for compounds that contain ammonium ions.

The most sensitive trophic level in tests on the toxicity of alkyl sulfates were invertebrates, followed by fish. Algae proved to be less sensitive. The key study for the aquatic hazard assessment is a chronic test on Ceriodaphnia dubia, which covers a range of the alkyl chain length from C12 to C18. A parabolic response was observed with the C14 chain length being the most toxic (NOEC = 0.045 mg/l).

For alkyl sulfates: Fish LC50 (96 h): fathead minnow - fry 10.2 mg/l; juvenile 17 mg/l; adult 22.5 mg/l; rainbow trout 4.6 mg/l (static)

The aquatic toxicity of AS seems to increase with increasing alkyl chain length. This has been shown for daphnids and for some fish species. An overall comparison of the acute toxicity between the primary and secondary AS shows only minor differences in the toxicity, although only a few studies for comparison are available.

The available data describing the toxicity of AS towards algae indicate that the lowest EC50 values range between 1 and 10 mg/l for C12 AS

The toxicity of AS towards invertebrates has mainly been examined in tests with Daphnia magna. The acute toxicity of AS to Daphnia magna increased with increasing alkyl chain length. It has been shown that during degradation of C12 AS, the toxicity first increased to a maximum after 30 hours and then fell to almost a negligible value. The increase in toxicity was explained by the formation of the more toxic dodecanoic acid which is rapidly transformed to other and less toxic metabolites.

Studies showed that the 24 h-LC50 values for killifish in distilled water decreased by a factor of about 10 when the alkyl chain was increased by two carbon atoms. C16 was 10 times more toxic than C14, which was about 10 times more toxic than C12 AS.

The toxicity of AS to fish has been demonstrated to increase with increasing alkyl chain length as also seen in studies with Daphnia magna. The acute toxicity on Daphnia magna has been determined for chain length C8-C14. Results were comparable to alkyl sulfates in the range between C8 and C10, while C12 and C14 are significantly less toxic. Chronic data obtained for C12 alkane sulfonate sodium and C12-alkyl sulfate sodium with the rotifer *Brachionus calicyflorus* similarly show that alkane sulfonates might be less toxic than alkyl sulfates. C16 and C18 alkane sulfonates are assumed to exhibit the same toxicity than alkyl sulfates of comparable chain lengths. No data are available concerning the toxicity of alkane sulfonates on fish and algae. However, a similar toxicity might be assumed because of structural and physico-chemical similarities between the three subcategories Whereas most correlations between AS structure and toxicity show an increasing toxicity with increasing alkyl chain length, the budding in Hydra attenuata was apparently more affected by C10 AS than by C12, C14, and C16 AS. The authors suggested that the decrease in toxicity with increasing alkyl chain length was attributable to reduced solubility in water

Tests on the toxicity to microorganisms were only conducted with alkyl sulfates as test substances. A test on the inhibition of respiration of activated sludge resulted in an 3 h-EC50 of 135 mg/l (nominally). The lowest effect value for protozoa was obtained from a test on *Uronema parduczi* using C12-alkyl sulfate sodium - the 20 h-EC5 was 0.75 mg/l. Experimental test results on benthic organisms in a water-sediment system are not available. However, due to sediment-water partitioning coefficients Kd < 350, no significant risk for organisms in this compartment is to be expected.

Data indicate that toxic effects on soil organisms might only be expected at high concentrations for alkyl sulfates. Toxicity of alkane sulfonates and alpha-olefin sulfonates can not be assessed because test results for terrestrial organisms are not available.

For alpha-olefin sulfonates, reliable short-term tests on fish, invertebrates and algae are available. The results indicate that toxicity is increasing as the alkyl chain length increases. The lowest available effect value is the 96 h-LC50 = 0.5 mg/l, determined in tests on *Oryzias latipes, Rasbora heteromorpha* and *Salmo trutta*Algae show toxic effects to growth when exposed 10-100 mg/l for C14-18 AOS.

EC50 values for Daphnia magna, showed EC50 values of 16.6 mg/l for C14-18 AOS . Another study with Daphnia magna, showed EC50 values of 16.6 mg/l for C14-16 AOS and 7.7 mg/l for C16-18 AOS.

Studies performed with fish show that the higher homologues of AOS are more toxic than the lower ones. This has been illustrated for different fish species (LC50 (96 h) range 0.5-5.3 mg/l)

For alkane sulfonates: The toxicity of various SAS homologues was determined in tests with *Chlamydomonas variabilis*. After 24 hours of exposure at 20 C, there was a tendency to an increased toxicity with increasing chain length. The EC50 values were 125 mg/l for C10.3, 74.9 mg/l for C11.2, 32.4 mg/l for C14, 15.8 mg/l for C15, 9.42 mg/l for C16, 3.93 mg/l for C17, 3.71 mg/l for C18.9, and 8.47 mg/l for C20.7.

Issue Date: 01/11/2019 Print Date: 26/11/2019

Miljoministeriet (Danish Environmental Protection Agency

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation	
water	LOW (LogKOW = -1.38)	

Mobility in soil

Ingredient	Mobility	
water	LOW (KOC = 14.3)	

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal
 Recycle wherever possible or consult manufacturer for recycling options.
 Consult State Land Waste Authority for disposal.
 Bury or incinerate residue at an approved site.
 Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

WATER IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

IMO IBC Code Chapter 18: List of products to which the Code does not apply

National Inventory Status

National Inventory	Status		
Australia - AICS	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (water)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - ARIPS	Yes		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)		

SECTION 16 OTHER INFORMATION

Revision Date 01/11/2019

Chemwatch: 4912-12 Page 10 of 10 Issue Date: 01/11/2019

Version No: 7.1.1.1 Print Date: 26/11/2019 Meguiar's M54 Marine Boat Wash Gel

> Initial Date 01/11/2009

SDS Version Summary

Version	Issue Date	Sections Updated
6.1.1.1	01/09/2015	One-off system update. NOTE: This may or may not change the GHS classification, Appearance, Fire Fighter (fire/explosion hazard), Physical Properties
7.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA} : {\sf Permissible\ Concentration-Time\ Weighted\ Average}$

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.