Meguiar's M44 - Heavy Duty Colour Restorer **Motor Active** Chemwatch: 4912-7 Version No: 9.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: 10/12/2021 Print Date: 04/08/2022 L.GHS.AUS.EN.E ## SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | |-------------------------------|--| | Product name | Meguiar's M44 - Heavy Duty Colour Restorer | | Chemical Name | Not Applicable | | Synonyms | Product Code: M44 | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Heavy duty colour restorer. | |--------------------------|-----------------------------| |--------------------------|-----------------------------| ## Details of the supplier of the safety data sheet | Registered company name | Motor Active | |-------------------------|---| | Address | 35 Slough Business Park, Holker Street Silverwater NSW 2128 Australia | | Telephone | +61 2 9737 9422 1800 350 622 | | Fax | +61 2 9737 9414 | | Website | www.motoractive.com.au | | Email | andrews@motoractive.com.au | ## **Emergency telephone number** | Association / Organisation | MotorActive | |-----------------------------------|---| | Emergency telephone numbers | +61 2 9737 9422 (For General Information Monday to Friday 8:30am to 5:pm) | | Other emergency telephone numbers | 13 11 26 (In Case of Emergency contact: Poison Information Hotline) | ## **SECTION 2 Hazards identification** #### Classification of the substance or mixture ## HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. ## ChemWatch Hazard Ratings | - | - | | | |--------------|-----|-----|-------------------------| | | Min | Max | | | Flammability | 1 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 2 | - 1 | 1 = Low | | Reactivity | 1 | | 2 = Moderate | | Chronic | 3 | | 3 = High
4 = Extreme | | Poisons Schedule | Not Applicable | |--------------------|--| | Classification [1] | Aspiration Hazard Category 1, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Carcinogenicity Category 1A, Reproductive Toxicity Category 1A, Specific Target Organ Toxicity - Repeated Exposure Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | ## Label elements Hazard pictogram(s) Signal word Danger ## Hazard statement(s) H304 May be fatal if swallowed and enters airways. Chemwatch: 4912-7 Page 2 of 18 Issue Date: 10/12/2021 Version No: 9.1 Print Date: 04/08/2022 ## Meguiar's M44 - Heavy Duty Colour Restorer | H315 | Causes skin irritation. | |-------|--| | H319 | Causes serious eye irritation. | | H350 | May cause cancer. | | H360D | May damage the unborn child. | | H373 | May cause damage to organs through prolonged or repeated exposure. | ## Supplementary statement(s) Not Applicable ## CLP classification (additional) Not Applicable ## Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P260 | Do not breathe mist/vapours/spray. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P264 | Wash all exposed external body areas thoroughly after handling. | #### Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider. | |----------------|--| | P331 | Do NOT induce vomiting. | | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P314 | Get medical advice/attention if you feel unwell. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | P362+P364 | Take off contaminated clothing and wash it before reuse. | ## Precautionary statement(s) Storage P405 Store locked up. ## Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. Not Applicable ## **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|--|--| | CAS NO | 76[weight] | Name | | 61790-53-2 | 5-15 | silica amorphous, diatomaceous earth | | 1317-95-9 | 8-10 | tripoli | | 7631-86-9 | 5-10 | silica amorphous | | 64742-46-7. | 3-8 | distillates, petroleum, middle, hydrotreated | | 64742-48-9. | 2-8 | naphtha petroleum, isoparaffin, hydrotreated | | 56-81-5 | 1-5 | glycerol | | 872-50-4 | 1-5 | N-methyl-2-pyrrolidone | | 111-90-0 | 1-5 | diethylene glycol monoethyl ether | | Not Available | 1-5 | acrylic copolymer proprietary | | Not Available | 1-5 | conditioners proprietary | | Legend: | 1. Classified by Chernwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | ## **SECTION 4 First aid measures** #### Description of first aid measures **Eye Contact** If this product comes in contact with the eyes: - ▶ Wash out immediately with fresh running water. - Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Chemwatch: 4912-7 Page 3 of 18 Issue Date: 10/12/2021 Version No: 9.1 Print Date: 04/08/2022 ## Meguiar's M44 - Heavy Duty Colour Restorer | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | |--------------|---| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. ## **SECTION 5 Firefighting measures** ## **Extinguishing media** - ▶ Water spray or fog. - Alcohol stable foam. - Dry chemical powder. - Carbon dioxide. ## Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |-------------------------|---| | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body
protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Fxplosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. | Combustion products include: carbon dioxide (CO2) silicon dioxide (SiO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. HAZCHEM Not Applicable ## **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | | | | | |--------------|--|--|---|--------|--------|------------| | Maria Callia | Chemical Class: aliphatic hydrocarbons For release onto land: recommended sorbents listed in order of priority. SORBENT TYPE RANK APPLICATION COLLECTION LIMITATIONS | | | | | | | Major Spills | LAND SPILL - SMALL cross-linked polymer - particulate cross-linked polymer - pillow | | 1 | shovel | shovel | R, W, SS | | | cross-irriked polytrier - pillow 1 throw pitchfork R, DG | | | | | 11,500,111 | Chemwatch: 4912-7 Issue Date: 10/12/2021 Page 4 of 18 Print Date: 04/08/2022 Version No: 9.1 ## Mequiar's M44 - Heavy Duty Colour Restorer | wood fiber - pillow | 2 | throw | pitchfork | R, P, DGC, RT | |------------------------------------|---|--------|------------|-----------------| | treated wood
fibre- pillow | 2 | throw | pitchfork | DGC, RT | | sorbent clay - particulate | 3 | shovel | shovel | R, I, P | | foamed glass - pillow | 3 | throw | pitchfork | R, P, DGC, RT | | LAND SPILL - MEDIUM | | | | | | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | | cross-linked polymer - pillow | 2 | throw | skiploader | R, DGC, RT | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | expanded mineral - particulate | 4 | blower | skiploader | R, I, W, P, DGC | | polypropylene - mat | 4 | throw | skiploader | DGC, RT | Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 Moderate hazard. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - ▶ Contain spill with sand, earth or vermiculite. - ▶ Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** ## Precautions for safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ Electrostatic discharge may be generated during pumping this may result in fire. ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs - Use in a well-ventilated area. Safe handling - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. ## Other information - Store in original containers. - Keep containers securely sealed. No smoking, naked lights or ignition sources. - ▶ Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. ▶ Check all containers are clearly labelled and free from leaks. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities #### Suitable containe - Packaging as recommended by manufacturer. #### Storage incompatibility ► Avoid reaction with oxidising agents Version No: 9.1 ## Meguiar's M44 - Heavy Duty Colour Restorer Issue Date: **10/12/2021**Print Date: **04/08/2022** ## SECTION 8 Exposure controls / personal protection ## **Control parameters** ## Occupational Exposure Limits (OEL) ## INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|--|--|-----------------------|-----------------------|------------------|--| | Australia Exposure Standards | silica amorphous,
diatomaceous earth | Silica - Amorphous:
Diatomaceous earth
(uncalcined) | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | tripoli | Silica - Crystalline: Tripoli (respirable dust) | 0.05
mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure Standards | silica amorphous | Silica - Amorphous: Fume
(thermally generated)
(respirable dust) | 2 mg/m3 | Not
Available | Not
Available | (e) Containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | silica amorphous | Silica, fused | 0.05
mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure Standards | silica amorphous | Silica - Amorphous:
Diatomaceous earth
(uncalcined) | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | silica amorphous | Silica - Amorphous: Silica gel | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | silica amorphous | Silica - Amorphous:
Precipitated silica | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | silica amorphous | Silica - Amorphous: Fumed silica (respirable dust) | 2 mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure Standards | distillates, petroleum, middle, hydrotreated | Oil mist, refined mineral | 5 mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure Standards | naphtha petroleum,
isoparaffin,
hydrotreated | Oil mist, refined mineral | 5 mg/m3 | Not
Available | Not
Available | Not Available | | Australia Exposure Standards | glycerol | Glycerin mist | 10 mg/m3 | Not
Available | Not
Available | (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica. | | Australia Exposure Standards | N-methyl-2-pyrrolidone |
1-Methyl-2-pyrrolidone | 25 ppm /
103 mg/m3 | 309 mg/m3 /
75 ppm | Not
Available | Not Available | ## **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |--|-------------|-------------|--------------| | silica amorphous | 18 mg/m3 | 200 mg/m3 | 1,200 mg/m3 | | silica amorphous | 18 mg/m3 | 100 mg/m3 | 630 mg/m3 | | silica amorphous | 120 mg/m3 | 1,300 mg/m3 | 7,900 mg/m3 | | silica amorphous | 45 mg/m3 | 500 mg/m3 | 3,000 mg/m3 | | silica amorphous | 18 mg/m3 | 740 mg/m3 | 4,500 mg/m3 | | distillates, petroleum, middle, hydrotreated | 1,100 mg/m3 | 1,800 mg/m3 | 40,000 mg/m3 | | naphtha petroleum, isoparaffin, hydrotreated | 350 mg/m3 | 1,800 mg/m3 | 40,000 mg/m3 | | naphtha petroleum, isoparaffin, hydrotreated | 1,100 mg/m3 | 1,800 mg/m3 | 40,000 mg/m3 | | glycerol | 45 mg/m3 | 180 mg/m3 | 1,100 mg/m3 | | N-methyl-2-pyrrolidone | 30 ppm | 32 ppm | 190 ppm | | diethylene glycol monoethyl ether | 75 ppm | 100 ppm | 450 ppm | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | silica amorphous, diatomaceous earth | Not Available | Not Available | | tripoli | Not Available | Not Available | | silica amorphous | 3,000 mg/m3 | Not Available | | distillates, petroleum, middle, hydrotreated | 2,500 mg/m3 | Not Available | | naphtha petroleum, isoparaffin, hydrotreated | 2,500 mg/m3 | Not Available | | glycerol | Not Available | Not Available | | N-methyl-2-pyrrolidone | Not Available | Not Available | | diethylene glycol monoethyl ether | Not Available | Not Available | Chemwatch: 4912-7 Page 6 of 18 Version No: 9.1 ## Mequiar's M44 - Heavy Duty Colour Restorer Issue Date: **10/12/2021**Print Date: **04/08/2022** #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |-----------------------------------|--|----------------------------------| | diethylene glycol monoethyl ether | Е | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### MATERIAL DATA #### 32trip The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e..generally less than 5 um. Because the margin of safety of the quartz TLV is not known with certainty and given the associated link between silicosis and lung cancer it is recommended that quartz concentrations be maintained as far below the TLV as prudent practices will allow. Exposure to respirable crystalline silicas (RCS) represents a significant hazard to workers, particularly those employed in the construction industry where respirable dusts of of cement and concrete are common. Cutting, grinding and other high speed processes, involving their finished products, may further result in dusty atmospheres. Bricks are also a potential source of RCSs under such circumstances. It is estimated that half of the occupations, involved in construction work, are exposed to levels of RCSs, higher than the current allowable limits. Beaudry et al: Journal of Occupational and Environmental Hygiene 10: 71-77; 2013 For amorphous crystalline silica (precipitated silicic acid): Amorphous crystalline silica shows little potential for producing adverse effects on the lung and exposure standards should reflect a particulate of low intrinsic toxicity. Mixtures of amorphous silicas/ diatomaceous earth and crystalline silica should be monitored as if they comprise only the crystalline forms. The dusts from precipitated silica and silica gel produce little adverse effect on pulmonary functions and are not known to produce significant disease or toxic effect. IARC has classified silica, amorphous as Group 3: ${f NOT}$ classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. For diethylene glycol monoethyl ether: CEL TWA: 25 ppm, 140 mg/m3 (compare WEEL TWA) (CEL = Chemwatch Exposure Limit) Saturated vapour concentration: 170 ppm at 25 deg. C. The material is generally not thought to be irritating to the skin but may cause a minor degree of eye irritation on direct contact. Acute toxic effects include central nervous system depression and adverse kidney effects. Liver effects are also reported on occasion. The no-observable-effect levels (NOEL) from various studies range from 0.17 to 1.0 g/kg/day depending on the species tested. A 2-year, three generation study of rats produced kidney damage and changes in liver, spleen and intestine at 0.95 g/kg/day. The NOEL was 0.2 g/kg/day. Extrapolation of the NOEL to man, with a 10-fold safety margin, suggests a permissible intake of 1.4 g/kg in man. Assuming similar intake by inhalation the AlHA has suggested a workplace environmental exposure level (WEEL) of 25 ppm. The in-air exposure value is based on a 70 kg man who inhales 10 m3 of air in one work shift. In contrast to several other glycol ethers, diethylene glycol monoethyl ether is poorly absorbed from the skin. NOTE N: The classification as a carcinogen need not apply if the full refining history is known and it can be shown that the substance from which it is produced is not a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | rype of Contaminant. | All Speed. | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only |
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or #### Meguiar's M44 - Heavy Duty Colour Restorer Issue Date: 10/12/2021 Print Date: 04/08/2022 Personal protection more when extraction systems are installed or used. #### Eye and face protection Safety glasses with side shields Chemical goggles Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection #### See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. #### Hands/feet protection As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber ## **Body protection** ## See Other protection below #### Other protection - Overalls. - P.V.C apron. Barrier cream. - Skin cleansing cream. - ► Eye wash unit. ## Recommended material(s) ## GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: #### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computergenerated selection: Meguiar's M44 - Heavy Duty Colour Restorer | Material | СРІ | |------------------|-----| | NATURAL RUBBER | В | | BUTYL | С | | NATURAL+NEOPRENE | С | | NITRILE | С | | PE/EVAL/PE | С | | PVA | С | * CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory: may degrade after 4 hours continuous immersion ## Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class
1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Version No: 9.1 ## Meguiar's M44 - Heavy Duty Colour Restorer Issue Date: 10/12/2021 Print Date: 04/08/2022 C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ## **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties | Appearance | Appearance A light brown viscous lotion with a sweet hydrocarbon odour; miscible with water. | | | |--|--|---|----------------| | Physical state | Liquid | Relative density (Water = 1) | 1.03 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | 8.0 | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 176 approx. | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | >93 | Taste | Not Available | | Evaporation rate | <1 | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | 8 (VOC) | | Vapour pressure (kPa) | <1.862 @ 21C
| Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (Not
Available%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** ## Information on toxicological effects | Inhaled | Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. | |--------------|---| | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. | | Skin Contact | Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition | | Еуе | Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | Chronic | Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure. Harmful: danger of serious damage to health by prolonged exposure through inhalation. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally | Chemwatch: **4912-7** Page **9** of **18** Version No: 9.1 #### Meguiar's M44 - Heavy Duty Colour Restorer Issue Date: 10/12/2021 Print Date: 04/08/2022 on the basis of: - clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. | /leguiar's M44 - Heavy Duty | TOXICITY | IRRITATION | |-------------------------------|--|--| | Colour Restorer | Not Available | Not Available | | silica amorphous, | TOXICITY | IRRITATION | | diatomaceous earth | Not Available | Not Available | | 4-: | TOXICITY | IRRITATION | | tripoli | Not Available | Not Available | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): non-irritating * | | silica amorphous | Inhalation(Rat) LC50; >0.139 mg/L4h ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | Oral (Rat) LD50; >1000 mg/kg ^[1] | Skin (rabbit): non-irritating * | | | | Skin: no adverse effect observed (not irritating) $^{[1]}$ | | | TOXICITY | IRRITATION | | stillates, petroleum, middle, | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | hydrotreated | Inhalation(Rat) LC50; 1.72 mg/l4h ^[1] | Skin: adverse effect observed (irritating) ^[1] | | | Oral (Rat) LD50; >5000 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | naphtha petroleum, | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | isoparaffin, hydrotreated | Inhalation(Rat) LC50; >4.42 mg/L4h ^[1] | Skin: adverse effect observed (irritating) ^[1] | | | Oral (Rat) LD50; >4500 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | glycerol | dermal (guinea pig) LD50: 58500 mg/kg ^[1] | Not Available | | | Oral (Mouse) LD50; 4090 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 8000 mg/kg ^[2] | Eye (rabbit): 100 mg - moderate | | N-methyl-2-pyrrolidone | Inhalation(Rat) LC50; 3.1-8.8 mg/l4h ^[2] | | | | Oral (Rat) LD50; 3914 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | diethylene glycol monoethyl | Dermal (rabbit) LD50: 8500 mg/kg ^[2] | Eye (rabbit): 125 mg mild | | ether | Inhalation(Rat) LC50; >5.24 mg/L4h ^[2] | Eye (rabbit): 500 mg moderate | | | Oral (Rat) LD50; 5500 mg/kg ^[2] | Skin (rabbit): 500 mg/24h mild | | Legend: | Value obtained from Europe ECHA Registered Substance | es - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless other | #### WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS The International Agency for Research on Cancer (IARC) has classified occupational exposures to **respirable** (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease. $Intermittent\ exposure\ produces;\ focal\ fibrosis,\ (pneumoconiosis),\ cough,\ dyspnoea,\ liver\ tumours.$ * Millions of particles per cubic foot (based on impinger samples counted by light field techniques). NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles. ## SILICA AMORPHOUS TRIPOLI Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS] The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Chemwatch: 4912-7 Page 10 of 18 Issue Date: 10/12/2021 Version No: 9.1 #### Meguiar's M44 - Heavy Duty Colour Restorer Print Date: 04/08/2022 The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since: - · The adverse effects of these materials are associated with undesirable components, and - · The levels of the undesirable components are inversely related to the degree of processing; - · Distillate base oils receiving the same degree or extent of processing will have similar toxicities; - · The potential toxicity of residual base oils is independent of the degree of processing the oil receives. - · The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing. The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential of lubricant base oils, hydrotreatment and / or solvent extraction methods can yield oils with no carcinogenic potential. Unrefined and mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active
components or the components are largely non-bioavailable due to their molecular size. Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing Skin irritating is not significant (CONCAWE) based on 14 tests on 10 CASs from the OLBO class (Other Lubricant Base Oils). Each study lasted for 24 hours, a period of time 6 times longer than the duration recommended by the OECD method). Eye irritation is not significant according to experimental data (CONCAWE studies) based on 9 "in vivo" tests on 7 CASs from the OLBO class(Other Lubricant Base Oils). Sensitisation: The substance does not cause the sensitization of the respiratory tract or of the skin. (CONCAWE studies based on 14 tests on 11 CASs from the OLBO class(Other Lubricant Base Oils)) Germ cell mutagenicity: The tests performed within the 'in vivo" studies regarding gene mutation at mice micronuclei indicated negative results (CONCAWE studies. AMES tests had negative results in 7 studies performed on 4 CASs from the OLBO class(Other Lubricant Base Oils)). Reproduction toxicity: Reproduction / development toxicity monitoring according to OECD 421 or 422 methods. CONCAWE tests gave negative results in oral gavage studies. Pre-birth studies regarding toxicity in the unborn foetus development process showed a maternal LOAEL (Lowest Observed Adverse Effect Level) of 125 mg/kg body/day, based on dermal irritation and a NOAEL (No Observable Adverse Effect Level) of 2000 mg/kg body/day, which shows that the substance is not toxic for reproduction. STOT (toxicity on specific target organs) - repeated exposure: Studies with short term repeated doses (28-day test) on rabbit skin indicated the NOAEL value of 1000 mg/kg. NOAEL for inhalation, local effects > 280 mg/m3 and for systemic effects NOAEL > 980 mg/m3. Sub-chronic toxicity 90-day study Dermal: NOAEL > 2000 mg/kg (CONCAWE studies). Repeat dose toxicity: Oral NOAEL for heavy paraffinic distillate aromatic extract could not be identified and is less than 125 mg/kg/day when administered orally. The NOAEL for lung changes associated with oil deposition in the lungs was 220 mg/m3. As no systemic toxicity was observed, the overall NOAEL for systemic effects was > 980 mg/m3. In a 90 day subchronic dermal study, the administration of Light paraffinic distillate solvent extract had an adverse effect on survivability, body weights, organ weights (particularly the liver and thymus), and variety of haematology and serum chemistry parameters in exposed animals Histopathological changes which were treatment-related were most prominent in the adrenals, bone marrow, kidneys, liver, lymph nodes, skin, stomach, and thymus. Based on the results of this study, the NOAEL for the test material is less than 30 mg/kg/day. Toxicity to reproduction: Mineral oil (a white mineral oil) caused no reproductive or developmental toxicity with 1 mL/kg/day (i.e., 1000 mg/kg/day) in an OECD 421 guideline study, but did cause mild to moderate skin irritation. Therefore, the reproductive/developmental NOAEL for this study is =1000 mg/kg/day and no LOAEL was determined. Developmental toxicity, teratogenicity: Heavy paraffinic distillate furfural extract produced maternal, reproductive and foetal toxicity. Maternal toxicity was exhibited as vaginal discharge (dose-related), body weight decrease, reduction in thymus weight and increase in liver weight (125 mg/kg/day and higher) and aberrant haematology and serum chemistry (125 and/or 500 mg/kg/day). Evidence of potential reproductive effects was shown by an increased number of dams with resorptions and intrauterine death. Distillate aromatic extract (DAE) was developmentally toxic regardless of exposure duration as indicated by increased resorptions and decreased foetal body weights. Furthermore, when exposures were increased to 1000 mg/kg/day and given only during gestation days 10 through 12, cleft palate and ossification delays were observed. Cleft palate was considered to indicate a potential teratogenic effect of DAE. The following Oil Industry Note (OIN) has been applied: OIN 8 - The classifications as a reproductive toxicant category 2; H361d (Suspected of damaging the unborn child) and specific target organ toxicant category 1; H372 (Causes damage to organs through prolonged or repeated exposure) need not apply if the substance is not classified as carcinogenic Toxicokinetics of lubricant base oils has been examined in rodents. Absorption of other lubricant base oils across the small intestine is related to carbon chain length; hydrocarbons with smaller chain length are more readily absorbed than hydrocarbons with a longer chain length. The majority of an oral dose of mineral hydrocarbon is not absorbed and is excreted unchanged in the faeces. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excretion of absorbed mineral hydrocarbons occurs via the faeces and urine. Based on the pharmacokinetic parameters and disposition profiles, the data indicate inherent strain differences in the total systemic exposure (~4 fold greater systemic dose in F344 vs SD rats), rate of metabolism, and hepatic and lymph node retention of C26H52, which may be associated with the different strain sensitivities to the formation of liver granulomas and MLN histiocytosis. Highly and Severely Refined Distillate Base Oils Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to> 4 mg/l. When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating" Testing in guinea pigs for sensitization has been negative Repeat dose toxicity: . Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil s toxicity is inversely related to the degree of processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/ or the peculiarities of - ▶ The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive, - The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and - The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials. Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study s authors. DISTILLATES, PETROLEUM. MIDDLE, HYDROTREATED Chemwatch: 4912-7 Page 11 of 18 Issue Date: 10/12/2021 Version No: 9.1 #### Meguiar's M44 - Heavy Duty Colour Restorer Print Date: 04/08/2022 A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gayage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters The study authors considered these malformations to be minor and within the normal ranges for the strain of rat. #### Genotoxicity: In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices. In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally. typical for isoparaffinic hydrocarbons: isoparaffinic hydrocarbon: #### NAPHTHA PETROLEUM, ISOPARAFFIN. HYDROTREATED For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans. Mutation-causing potential: Most studies involving gasoline have returned negative
results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants). Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials. Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable. Acute toxicity: Glycerol is of a low order of acute oral and dermal toxicity with LD50 values in excess of 4000 mg/kg bw. At very high dose levels, the signs of toxicity include tremor and hyperaemia of the gastro-intestinal -tract. Skin and eye irritation studies indicate that glycerol has low potential to irritate the skin and the eye. The available human and animal data, together with the very widespread potential for exposure and the absence of case reports of sensitisation, indicate that glycerol is not a skin sensitiser. Repeat dose toxicity: Repeated oral exposure to glycerol does not induce adverse effects other than local irritation of the gastro-intestinal tract. The overall NOEL after prolonged treatment with glycerol is 10,000 mg/kg bw/day (20% in diet). At this dose level no systemic or local effects were observed. For inhalation exposure to aerosols, the NOAEC for local irritant effects to the upper respiratory tract is 165 mg/m3 and 662 #### GLYCEROL Genotoxicity: Glycerol is free from structural alerts, which raise concern for mutagenicity. Glycerol does not induce gene mutations in bacterial strains, chromosomal effects in mammalian cells or primary DNA damage in vitro. Results of a limited gene mutation test in mammalian cells were of uncertain biological relevance. In vivo, glycerol produced no statistically significant effect in a chromosome aberrations and dominant lethal study. However, the limited details provided and the absence of a positive control, prevent any reliable conclusions to be drawn from the in vivo data. Overall, glycerol is not considered to possess genotoxic potential. Carcinogenicity: The experimental data from a limited 2 year dietary study in the rat does not provide any basis for concerns in relation to carcinogenicity. Data from non-guideline studies designed to investigate tumour promotion activity in male mice suggest that oral administration of glycerol up to 20 weeks had a weak promotion effect on the incidence of tumour formation. Reproductive and developmental toxicity: No effects on fertility and reproductive performance were observed in a two generation study with glycerol administered by gavage (NOAEL 2000 mg/kg bw/day). No maternal toxicity or teratogenic effects were seen in the rat, mouse or rabbit at the highest dose levels tested in a guideline comparable teratogenicity study (NOEL 1180 mg/kg bw/day). #### for N-methyl-2-pyrrolidone (NMP): Acute toxicity: In rats, NMP is absorbed rapidly after inhalation, oral, and dermal administration, distributed throughout the organism, and eliminated mainly by hydroxylation to polar compounds, which are excreted via urine. About 80% of the administered dose is excreted as NMP and NMP metabolites within 24 h. A probably dose-dependent yellow coloration of the urine in rodents is observed. The major metabolite is 5-hydroxy-N-methyl-2-pyrrolidone. Studies in humans show comparable results. Dermal penetration through human skin has been shown to be very rapid. NMP is rapidly biotransformed by hydroxylation to 5-hydroxy-N-methyl-2-pyrrolidone, which is further oxidized to N-methylsuccinimide; this intermediate is further hydroxylated to 2-hydroxy-N-methylsuccinimide. These metabolites are all colourless. The excreted amounts of NMP metabolites in the urine after inhalation or oral intake represented about 100% and 65% of the administered doses, respectively. NMP has a low potential for skin irritation and a moderate potential for eye irritation in rabbits. Repeated daily doses of 450 mg/kg body weight administered to the skin caused painful and severe haemorrhage and eschar formation in rabbits. These adverse effects have not been seen in workers occupationally exposed to pure NMP, but they have been observed after dermal exposure to NMP used in cleaning processes. No sensitisation potential has been observed. In acute toxicity studies in rodents, NMP showed low toxicity. Uptake of oral, dermal, or inhaled acutely toxic doses causes functional disturbances and depressions in the central nervous system. Local irritation effects were observed in the respiratory tract when NMP was inhaled and in the pyloric and gastrointestinal tracts after oral administration. In humans, there was no irritative effect in the respiratory system after an 8-h exposure to 50 mg/m3. Repeat dose toxicity: There is no clear toxicity profile of NMP after multiple administration. In a 28-day dietary study in rats, a compound-related decrease in body weight gain was observed in males at 1234 mg/kg body weight and in females at 2268 mg/kg body weight. Testicular degeneration and atrophy in males and thymic atrophy in females were observed at these dose levels. The no-observed-adverse-effect level (NOAEL) was 429 mg/kg body weight in males and 1548 mg/kg body weight in females. In a 28-day intubation study in rats, a dose-dependent increase in relative liver and kidney weights and a decrease in lymphocyte count in both sexes were observed at 1028 mg/kg body weight. The NOAEL in this study was 514 mg/kg body weight. In another rat study, daily dietary intake for 90 days caused decreased body weights at doses of 433 and 565 mg/kg body weight in males and females, respectively. There were also neurobehavioural effects at these dose levels. The The toxicity profile after exposure to airborne NMP depends strongly on the ratio of vapour to aerosol and on the area of exposure (i.e., head-only or whole-body exposure). Because of higher skin absorption for the aerosol, uptake is higher in animals exposed to aerosol than in those exposed to vapour at similar concentrations. Studies in female rats exposed head only to 1000 mg/m3 showed only minor nasal irritation, but massive mortality and severe effects on major organs were observed when the females were whole-body exposed to the same concentration of coarse droplets at high relative humidity. Several studies in rats following repeated exposure to NMP at concentrations between 100 and 1000 mg/m3 have shown systemic toxicity effects at the lower dose levels. In most of the studies, the effects were not observed after a 4-week observation period. In rats, exposure to 3000 mg NMP/m3 (head only) for 6 h/day, 5 days/week, for 13 weeks caused a decrease in body weight gain, an increase in erythrocytes, haemoglobin, haematocrit, and mean corpuscular volume, decreased absolute testis weight, and cell loss in the germinal epithelium of the testes. The NOAEL was 500 mg/m3. There are no data in humans after repeated-dose exposure. NOAELs in males and females were 169 and 217 mg/kg body weight, respectively. Carcinogenicity: NMP did not show any clear evidence for carcinogenicity in rats exposed to concentrations up to 400 mg/m3 in a long-term inhalation study. Genotoxicity: The mutagenic potential of NMP is weak. Only a slight increase in the number of revertants was observed when tested in a Salmonella assay with base-pair substitution strains. NMP has been shown to induce aneuploidy in yeast Saccharomyces cerevisiae cells. No investigations regarding mutagenicity in humans were available. Reproductive toxicity: In a two-generation reproduction study in rats, whole-body exposure of both males and females to 478 mg/m3 of NMP vapour for 6 h/day, 7 days/week, for a minimum of 100 days (pre-mating, mating, gestation, and lactation periods) resulted in a 7% decrease in #### N-METHYL-2-PYRROLIDONE Chemwatch: 4912-7 Page 12 of 18 Version No: 9.1 Meguiar's M44 - Heavy Duty Colour Restorer Issue Date: 10/12/2021 Print Date: 04/08/2022 fetal weight in the F1 offspring. A 4-11% transient, non-dose-dependent decrease was observed in the average pup weight at all exposure levels tested (41, 206, and 478 mg/m3). Developmental toxicity: When NMP was administered dermally, developmental toxicity was registered in rats at 750 mg/kg body weight. The observed effects were increased preimplantation losses, decreased fetal weights, and delayed ossification. The NOAEL for both developmental effects and maternal toxicity (decreased body weight gain) was 237 mg/kg body weight. Inhalation studies in rats (whole-body exposure) demonstrated developmental toxicity as increased preimplantation loss without significant effect on implantation rate or number of live fetuses at 680 mg/m3 and behavioural developmental toxicity at 622 mg/m3. In an inhalation study (whole-body exposure), the NOAEL for maternal effects was 100 mg/m3, and the NOAEL for developmental effects was 360 mg/m3. A tolerable inhalation concentration, 0.3 mg/m3, based on mortality and organ damage, is expected to be protective against any possible reproductive toxicity. Similarly, an oral tolerable intake of 0.6 mg/kg body weight per day, based on a 90-day study, is expected to provide adequate protection against possible reproductive effects. Because of non-existent data on the exposure of the general population and very limited information on occupational exposure, no meaningful risk characterisation can be performed A substance (or part of a group of chemical substances) of very high concern (SVHC) - or product containing an SVHC: It is proposed that use within the European Union be subject to authorisation under the REACH Regulation.
Indeed, listing of a substance as an SVHC by the European Chemicals Agency (ECHA) is the first step in the procedure for authorisation or restriction of use of a chemical The criteria are given in article 57 of the REACH Regulation. A substance may be proposed as an SVHC if it meets one or more of the following criteria: - ▶ it is carcinogenic *: - ▶ it is mutagenic *; assessment: - it is toxic for reproduction *; - it is persistent, bioaccumulative and toxic (PBT substances): - it is very persistent and very bioaccumulative (vPvB substances); - there is "scientific evidence of probable serious effects to human health or the environment which give rise to an equivalent level of concern"; such substances are identified on a case-by-case basis. Collectively described as CMR substances The "equivalent concern" criterion is significant because it is this classification which allows substances which are, for example, neurotoxic, endocrine-disrupting or otherwise present an unanticipated environmental health risk to be regulated under REACH] Simply because a substance meets one or more of the criteria does not necessarily mean that it will be proposed as an SVHC. Many such substances are already subject to restrictions on their use within the European Union, such as those in Annex XVII of the REACH Regulation SVHCs are substances for which the current restrictions on use (where these exist) might be insufficient. There are three priority groups for - ► PBT substances and vPvB substances; - substances which are widely dispersed during use; - substances which are used in large quantities. The material may produce moderate eve irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis For diethylene glycol monoalkyl ethers and their acetates: This category includes diethylene glycol ethyl ether (DGEE), diethylene glycol propyl ether (DGPE) diethylene glycol butyl ether (DGBE) and diethylene glycol hexyl ether (DGHE) and their acetates. Acute toxicity: There are adequate oral, inhalation and/or dermal toxicity studies on the category members. Oral LD50 values in rats for all category members are all > 3000 mg/kg bw, with values generally decreasing with increasing molecular weight. Four to eight hour acute inhalation toxicity studies were conducted for all category members except DGPE in rats at the highest vapour concentrations achievable. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 2000 mg/kg bw (DGHE) to 15000 mg/kg bw (DGEEA). Signs of acute toxicity in rodents are consistent with non-specific CNS depression typical of organic solvents in general. All category members are slightly irritating to skin and slightly to moderately irritating to eyes (with the exception of DGHE, which is highly irritating to eyes). Sensitisation tests with DGEE, DGEEA, DGPE, DGBE and DGBEA in animals and/or humans were negative. Repeat dose toxicity: Valid oral studies conducted using DGEE, DGPE, DGBEA, DGHE and the supporting chemical DGBE ranged in duration from 30 days to 2 years. Effects predominantly included kidney and liver toxicity, absolute and/or relative changes in organ weights, and some changes in haematological parameters. All effects were seen at doses greater than 800-1000 mg/kg bw/day from oral or dermal studies; no systemic effects were observed in inhalation studies with less than continuous exposure regimens. Mutagenicity: DGEE, DGEEA, DGBE, DGBEA and DGHE generally tested negative for mutagenicity in S. typhimurium strains TA98, TA100, TA1535, TA1537 and TA1538 and DGBEA tested negative in E. coli WP2uvrA, with and without metabolic activation. In vitro cytogenicity and sister chromatid exchange assays with DGBE and DGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus or cytogenicity tests with DGEE, DGBE and DGHE in rats and mice were negative, indicating that these diethylene glycol ethers are not likely to be genotoxic. Reproductive and developmental toxicity: Reliable reproductive toxicity studies on DGEE, DGBE and DGHE show no effect on fertility at the highest oral doses tested (4,400 mg/kg/day for DGEE in the mouse and 1,000 mg/kg/day for DGBE and DGHE in the rat). The dermal NOAEL for reproductive toxicity in rats administered DGBE also was the highest dose tested (2,000 mg/kg/day). Although decreased sperm motility was noted in F1 mice treated with 4,400 mg/kg/day DGEE in drinking water for 14 weeks, sperm concentrations and morphology, histopathology of the testes and fertility were not affected. Results of the majority of adequate repeated dose toxicity studies in which reproductive organs were examined indicate that DGPE and DGBEA do not cause toxicity to reproductive organs (including the testes). Test material-related testicular toxicity was not noted in the majority of the studies with DGEE or DGEEA. Results of the developmental toxicity studies conducted with DGEE, DGBE and DGHE are almost exclusively negative. In these studies, effects on the foetus are generally not observed (even at concentrations that produced maternal toxicity). Exposure to 102 ppm (560 mg/m3) DGEE by inhalation (maximal achievable vapour concentration) or 1385 mg/kg/day DGEE by the dermal route during gestation did not cause maternal or developmental toxicity in the rat. Maternal toxicity and teratogenesis were not observed in rabbits receiving up to 1000 mg/kg/day DGBE by the dermal route during gestation; however a transient decrease in body weight was observed, which reversed by Day 21 In the mouse, the only concentration of DGEE tested (3500 mg/kg/day by gavage) caused maternal, but no foetal toxicity. Also, whereas oral administration of 2050 mg/kg/day DGBE (gavage) to the mouse and 1000 mg/kg/day DGHE (dietary) caused maternal toxicity, these doses had no effect on the developing foetus Mequiar's M44 - Heavy Duty Colour Restorer & SILICA AMORPHOUS, **DIATOMACEOUS EARTH &** TRIPOLI & NAPHTHA PETROLEUM, ISOPARAFFIN, **HYDROTREATED** DIETHYLENE GLYCOL MONOFTHYL ETHER No significant acute toxicological data identified in literature search. Meguiar's M44 - Heavy Duty Colour Restorer & SILICA AMORPHOUS, **DIATOMACEOUS EARTH &** SILICA AMORPHOUS For silica amorphous: Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d. In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin. When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the Continued... Chemwatch: 4912-7 Page 13 of 18 Issue Date: 10/12/2021 Version No: 9.1 #### Meguiar's M44 - Heavy Duty Colour Restorer Print Date: 04/08/2022 vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser. Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact. Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL. Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive
organs in long-term studies were not affected. For Synthetic Amorphous Silica (SAS) Repeated dose toxicity Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet. Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) = 1.3 mg/m3 based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity. For silane treated synthetic amorphous silica: Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested. There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS. #### DISTILLATES, PETROLEUM, MIDDLE, HYDROTREATED & NAPHTHA PETROLEUM, ISOPARAFFIN, HYDROTREATED Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorbtion of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are inquested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. #### **GLYCEROL & N-METHYL-**2-PYRROLIDONE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. | Acute Toxicity | × | Carcinogenicity | ~ | |-----------------------------------|---|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | ✓ | | Mutagenicity | × | Aspiration Hazard | ✓ | - Data either not available or does not fill the criteria for classification Legend: Data available to make classification #### **SECTION 12 Ecological information** #### Toxicity | M | Endpoint | Test Duration (hr) | Species | Value | Source | |---|------------------|--------------------|---------------|------------------|------------------| | Meguiar's M44 - Heavy Duty
Colour Restorer | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | silica amorphous,
diatomaceous earth | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | tripoli | Not
Available | Not Available | Not Available | Not
Available | Not
Available | Chemwatch: **4912-7**Page **14** of **18**Issue Date: **10/12/2021**Version No: **9.1**Print Date: **04/08/2022** #### Meguiar's M44 - Heavy Duty Colour Restorer | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------|--|---|---|--| | EC0(ECx) | 24h | Crustacea | >=10000mg/l | 1 | | EC50 | 72h | Algae or other aquatic plants | 14.1mg/l | 2 | | EC50 | 48h | Crustacea | >86mg/l | 2 | | LC50 | 96h | Fish | 1033.016mg/l | 2 | | EC50 | 96h | Algae or other aquatic plants | 217.576mg/l | 2 | | Endpoint | Test Duration (hr) | Species | Value | Source | | NOEC(ECx) | 72h | Algae or other aquatic plants | <0.03mg/l | 1 | | Endpoint | Test Duration (hr) | Species | Value | Source | | EC50(ECx) | 96h | Algae or other aquatic plants | 64mg/l | 2 | | EC50 | 96h | Algae or other aquatic plants | 64mg/l | 2 | | Endpoint | Test Duration (hr) | Species | Value | Source | | EC0(ECx) | 24h | Crustacea | >500mg/l | 1 | | LC50 | 96h | Fish | 885mg/l | 2 | | Endpoint | Test Duration (hr) | Species | Value | Source | | NOEC(ECx) | 504h | Crustacea | 12.5mg/l | 2 | | EC50 | 72h | Algae or other aquatic plants | >500mg/l | 1 | | EC50 | 48h | Crustacea | ca.4897mg/l | 1 | | LC50 | 96h | Fish | 464mg/l | 1 | | Endpoint | Test Duration (hr) | Species | Value | Source | | EC50 | 72h | Algae or other aquatic plants | 14861mg/l | 2 | | EC50 | 48h | Crustacea | 3996.849mg/L | 4 | | EC10(ECx) | 168h | Crustacea | 7.38mg/l | 2 | | LC50 | 96h | Fish | ~6010mg/l | 2 | | EC50 | 96h | Algae or other aquatic plants | >100mg/l | 2 | | | EC0(ECx) EC50 EC50 EC50 EC50
EC50 Endpoint NOEC(ECx) EC50 Endpoint EC50(ECx) EC50 Endpoint EC50(ECx) LC50 Endpoint NOEC(ECx) EC50 Endpoint NOEC(ECx) EC50 EC50 EC50 EC50 EC50 EC50 EC50 EC50 | EC0(ECx) 24h EC50 72h EC50 48h LC50 96h EC50 96h EC50 96h Endpoint Test Duration (hr) NOEC(ECx) 72h Endpoint Test Duration (hr) EC50 96h Endpoint Test Duration (hr) EC0(ECx) 24h LC50 96h Endpoint Test Duration (hr) NOEC(ECx) 504h EC50 72h EC50 48h LC50 96h Endpoint Test Duration (hr) EC50 48h EC50 48h EC50 48h EC50 48h EC10(ECx) 168h | ECO(ECx) 24h Crustacea EC50 72h Algae or other aquatic plants EC50 48h Crustacea LC50 96h Fish EC50 96h Algae or other aquatic plants Endpoint Test Duration (hr) Species Endpoint Test Duration (hr) Species EC50(ECx) 96h Algae or other aquatic plants EC50 96h Algae or other aquatic plants Endpoint Test Duration (hr) Species EC0(ECx) 24h Crustacea EC50 96h Fish Endpoint Test Duration (hr) Species Endpoint Test Duration (hr) Species EC50 72h Algae or other aquatic plants EC50 48h Crustacea EC50 72h Algae or other aquatic plants EC50 72h Algae or other aquatic plants EC50 72h Algae or other aquatic plants EC50 48h Crustacea | ECO(ECX) 24h Crustacea >=10000mg/l EC50 72h Algae or other aquatic plants 14.1mg/l EC50 48h Crustacea >86mg/l LC50 96h Fish 1033.016mg/l EC50 96h Algae or other aquatic plants 217.576mg/l Endpoint Test Duration (hr) Species Value NOEC(ECX) 72h Algae or other aquatic plants 64mg/l Endpoint Test Duration (hr) Species Value EC50(ECX) 96h Algae or other aquatic plants 64mg/l Endpoint Test Duration (hr) Species Value EC0(ECX) 24h Crustacea >500mg/l LC50 96h Fish 885mg/l Endpoint Test Duration (hr) Species Value NOEC(ECX) 504h Crustacea 12.5mg/l EC50 72h Algae or other aquatic plants >500mg/l EC50 48h Crustacea ca.4897mg/l EC50 </td | For hydrocarbons: #### Environmental fate: The lower molecular weight hydrocarbons are expected to form a "slick" on the surface of waters after release in calm sea conditions. This is expected to evaporate and enter the atmosphere where it will be degraded through reaction with hydroxy radicals. Some hydrocarbon will become associated with benthic sediments, and it is likely to be spread over a fairly wide area of sea floor. Marine sediments may be either aerobic or anaerobic. The material, in probability, is biodegradable, under aerobic conditions (isomerised olefins and alkenes show variable results). Evidence also suggests that the hydrocarbons may be degradable under anaerobic conditions although such degradation in benthic sediments may be a relatively slow process. Under aerobic conditions hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes they produce water, methane and carbon dioxide. - Bioconcentration Data 8 Vendor Data Alkenes have low log octanol/water partition coefficients (Kow) of about 1 and estimated bioconcentration factors (BCF) of about 10; aromatics have intermediate values (log Kow values of 2-3 and BCF values of 20-200), while C5 and greater alkanes have fairly high values (log Kow values of about 3-4.5 and BCF values of 100-1,500 The estimated volatilisation half-lives for alkanes and benzene, toluene, ethylbenzene, xylene (BTEX) components were predicted as 7 days in ponds, 1.5 days in rivers, and 6 days in lakes. The volatilisation rate of naphthalene and its substituted derivatives were estimated to be slower. Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Unlike other fate processes that disperse contaminants in the environment, biodegradation can eliminate the contaminants without transferring them across media. The final products of microbial degradation are carbon dioxide, water, and microbial biomass. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Generally the straight chain hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilisation and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialised hydrocarbon degraders; and n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation of oil. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. All biological transformations are affected by temperature. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs. Atmospheric fate: Alkanes, isoalkanes, and cycloalkanes have half-lives on the order of 1-10 days, whereas alkenes, cycloalkenes, and substituted benzenes have half-lives of 1 day or less. Photochemical oxidation products include aldehydes, hydroxy compounds, nitro compounds, and peroxyacyl nitrates. Alkenes, certain substituted aromatics, and naphthalene are potentially susceptible to direct photolysis. #### Ecotoxicity Hydrocarbons are hydrophobic (high log Kow and low water solubility). Such substances produce toxicity in aquatic organisms by a mechanism referred to as "non-polar narcosis" or "baseline" toxicity. The hydrophobicity increases and water solubility decreases with increasing carbon number for a particular class of hydrocarbon. Substances with the same carbon number show increased hydrophobicity and decreased solubility with increasing saturation. Quantitative structure activity relationships (QSAR), relating both solubility and toxicity to Kow predict that the water solubility of single chemical substances decreases more rapidly with increasing Kow than does the acute toxicity. Based on test results, as well as theoretical considerations, the potential for bioaccumulation may be high. Toxic effects are often observed in species such as blue mussel, daphnia, freshwater green algae, marine copepods and amphipods. The values of log Kow for individual hydrocarbons increase with increasing carbon number within homologous series of generic types. Quantitative structure activity relationships (QSAR), relating log Kow values of single hydrocarbons to toxicity, show that water solubility decreases more rapidly with increasing Kow than does the concentration causing effects. This relationship varies somewhat with species of hydrocarbon, but it follows that there is a log Kow limit for hydrocarbons, above which, they will not exhibit acute toxicity; this limit is at a log Kow value of about 4 to 5. It has been confirmed experimentally that for fish and invertebrates, paraffinic hydrocarbons with a carbon number of 10 or higher (log Kow >5) show no acute toxicity and that alkylbenzenes with a carbon number of 14 or greater (log Kow >5) similarly show no acute toxicity. QSAR equations for chronic toxicity also suggest that there should be a point where hydrocarbons with high log Kow values become so insoluble in water that they will not cause chronic toxicity, that is, that there is also a solubility cut-off for chronic toxicity. Thus, paraffinic hydrocarbons with carbon numbers of greater than 14 (log Kow >7.3) should show no Chemwatch: **4912-7** Page **15** of **18** Version No: 9.1 #### Meguiar's M44 - Heavy Duty Colour Restorer Issue Date: **10/12/2021**Print Date: **04/08/2022** measurable chronic toxicity. Experimental support for this cut-off is demonstrated by chronic toxicity studies on lubricant base oils and one "heavy" solvent grade (substances composed of paraffins of C20 and greater) which show no effects after exposures to concentrations well above solubility. The initial criteria for classification of substances as dangerous to the aquatic environment are based upon acute toxicity data in fish, daphnids and algae. However, for substances that have low solubility and show no acute toxicity, the possibility of a long-term or chronic hazard to the environment is recognised in the R53 phrase or so-called "safety net". The R53 assignment for possible long-term harm is a surrogate for chronic toxicity test results and is triggered by substances that are both bioaccumulative and persistent. The indicators of bioaccumulation and persistence are taken as a BCF > 100 (or log Kow > 3 if no BCF data) and lack of ready biodegradability. For low solubility substances which have direct chronic toxicity data demonstrating no chronic toxicity at 1 mg/L or higher, these data take precedence such that no classification for long term toxicity is required. Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.). For Amorphous Silica: Amorphous silica is chemically and biologically inert. It is not biodegradable. Aquatic Fate: Due to its insolubility in water there is a separation at every filtration and sedimentation process. On a global scale, the level of man-made synthetic amorphous silicas (SAS) represents up to 2.4% of the dissolved silica naturally present in the aquatic environment and untreated SAS have a relatively low water solubility and an extremely low vapour pressure. Biodegradability in sewage treatment plants or in surface water is not applicable to inorganic substances like SAS. Terrestrial Fate: Crystalline and/or amorphous silicas are common on the earth in soils and sediments, and in
living organisms (e.g. diatoms), but only the dissolved form is bioavailable. On the basis of these properties it is expected that SAS released into the environment will be distributed mainly into soil/sediment. Surface treated silica will be wetted then adsorbed onto soils and sediments. Atmospheric Fate: SAS is not expected to be distributed into the air if released. Ecotoxicity: SAS is not toxic to environmental organisms (apart from physical desiccation in insects). SAS presents a low risk for adverse effects to the environment. For Silica: Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (man-made or natural), or structure, (crystalline or amorphous). Terrestrial Fate: Silicon makes up 25.7% of the Earth's crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinction can be made between the initial forms of silica. Aquatic Fate: At normal environmental pH, dissolved silica exists exclusively as monosilicic acid. At pH 9.4, amorphous silica is highly soluble in water. Crystalline silica, in the form of quartz, has low solubility in water. Silicic acid plays an important role in the biological/geological/chemical cycle of silicon, especially in the ocean. Marine organisms such as diatoms, silicoflacellates and radiolarians use silicic acid in their skeletal structures and their skeletal remains leave silica in sea sediment Ecotoxicity: Silicon is important to plant and animal life and is practically non-toxic to fish including zebrafish, and Daphnia magna water fleas. #### DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------------------------|---------------------------|-----------------------------| | silica amorphous | LOW | LOW | | glycerol | LOW | LOW | | N-methyl-2-pyrrolidone | LOW | LOW | | diethylene glycol monoethyl ether | LOW (Half-life = 56 days) | LOW (Half-life = 0.93 days) | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |-----------------------------------|-----------------------| | silica amorphous | LOW (LogKOW = 0.5294) | | glycerol | LOW (LogKOW = -1.76) | | N-methyl-2-pyrrolidone | LOW (BCF = 0.16) | | diethylene glycol monoethyl ether | LOW (LogKOW = -0.54) | ## Mobility in soil | Ingredient | Mobility | |-----------------------------------|-------------------| | silica amorphous | LOW (KOC = 23.74) | | glycerol | HIGH (KOC = 1) | | N-methyl-2-pyrrolidone | LOW (KOC = 20.94) | | diethylene glycol monoethyl ether | HIGH (KOC = 1) | ## **SECTION 13 Disposal considerations** ## Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: ## Product / Packaging disposal - Reduction - Reuse - ▶ Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Issue Date: 10/12/2021 Print Date: 04/08/2022 - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 Transport information** #### Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Trails port in burk in accordance with marks of Annex v and the mode code | | | |---|---------------|--| | Product name | Group | | | silica amorphous, diatomaceous earth | Not Available | | | tripoli | Not Available | | | silica amorphous | Not Available | | | distillates, petroleum, middle, hydrotreated | Not Available | | | naphtha petroleum, isoparaffin, hydrotreated | Not Available | | | glycerol | Not Available | | | N-methyl-2-pyrrolidone | Not Available | | | diethylene glycol monoethyl ether | Not Available | | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--|---------------| | silica amorphous, diatomaceous earth | Not Available | | tripoli | Not Available | | silica amorphous | Not Available | | distillates, petroleum, middle, hydrotreated | Not Available | | naphtha petroleum, isoparaffin, hydrotreated | Not Available | | glycerol | Not Available | | N-methyl-2-pyrrolidone | Not Available | | diethylene glycol monoethyl ether | Not Available | ## **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture silica amorphous, diatomaceous earth is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) ## tripoli is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring Australian Inventory of Industrial Chemicals (AIIC) silica amorphous is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) Chemwatch: 4912-7 Page 17 of 18 Version No: 9.1 Meguiar's M44 - Heavy Duty Colour Restorer Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs naphtha petroleum, isoparaffin, hydrotreated is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs Issue Date: 10/12/2021 Print Date: 04/08/2022 glycerol is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) N-methyl-2-pyrrolidone is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List diethylene glycol monoethyl ether is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### **National Inventory Status** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | No (silica amorphous, diatomaceous earth; tripoli) | | Canada - NDSL | No (tripoli; distillates, petroleum, middle, hydrotreated; naphtha petroleum, isoparaffin, hydrotreated; glycerol; N-methyl-2-pyrrolidone; diethylene glycol monoethyl ether) | | China - IECSC | Yes
| | Europe - EINEC / ELINCS / NLP | No (tripoli) | | Japan - ENCS | No (distillates, petroleum, middle, hydrotreated; naphtha petroleum, isoparaffin, hydrotreated) | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | No (tripoli) | | Taiwan - TCSI | Yes | | Mexico - INSQ | No (tripoli) | | Vietnam - NCI | Yes | | Russia - FBEPH | No (tripoli) | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | ## **SECTION 16 Other information** | Revision Date | 10/12/2021 | |---------------|------------| | Initial Date | 18/11/2006 | ## **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 8.1 | 20/08/2021 | Classification change due to full database hazard calculation/update. | | 9.1 | 10/12/2021 | Classification change due to full database hazard calculation/update. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value Chemwatch: 4912-7 Page 18 of 18 Issue Date: 10/12/2021 Version No: 9.1 Print Date: 04/08/2022 ## Meguiar's M44 - Heavy Duty Colour Restorer LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.